Degrading enzymes and phytotoxins in Monilinia spp

  • C. Garcia-Benitez
  • P. Melgarejo
  • P. Sandin-España
  • B. Sevilla-Morán
  • A. De CalEmail author


Necrotrophic phytopathogenic fungi secrete degrading enzymes and phytotoxins to penetrate and colonise plant tissues. Since knowledge on the pathogenic processes of brown rot in fruit which becomes infected by Monilinia spp. is limited, we undertook an investigation whose aims were to detect: (i) the degrading enzymes of Monilinia spp. when cultured on media amended with different substrates, and (ii) the phytotoxins which are secreted by Monilinia fructicola, M. fructigena and M. laxa in brown rot-infected fruit. The sporulation and growth of 10 M. fructicola isolates, 9 M. fructigena isolates, and 10 M. laxa isolates plates, which contained 25 mL 2% (w/v) bacteriological agar, 0.67% (w/v) yeast nitrogen base, and 1% (w/v) of one of the following substrates: (1) β1–3 glucan (callose), (2) casein hydrolysate, (3) cutin, (4) methylcellulose, (5) apple pectin, (6) polygalacturonic acid sodium salt, (7) D(+)-sucrose, and (8) xylan were determined in order to detect the degrading enzymes. To look for the phytotoxins, the juice of nectarines that were inoculated with conidial suspensions M. fructicola, M. fructigena and M. laxa were subjected to liquid-liquid extraction with different organic solvents. The extracts were tested for their ability to cause necrosis on nectarine discs and the ones with a positive response were analysed by high performance liquid chromatography with DAD and MS spectrometer detectors and different fractions were collected to delimit metabolites. We found that Monilinia spp. secrete phytotoxins with a molar mass between 329 and 387 g mol−1 and degrading enzymes (cutinases, α-glucosidases, pectin lyases, polygalacturonases, proteases, and xylanases) for penetrating the fruit surface and invading and colonising fruit tissues.


Brown rot Monilinia fructicola Monilinia fructigena Monilinia laxa Phytotoxins Degrading enzymes 



We thank M.T. Morales Clemente and R. Castillo for their technical collaboration. The authors would also like to acknowledge Dr. Arieh Bomzon, ConsulWrite ( for his editorial assistance in preparing this manuscript.


This study was funded by grants AGL2011–30472-CO2–02 and AGL2014–55287-CO2–01 from the Spanish Ministry of Science and Innovation. C. Garcia-Benitez received a scholarship (BES-2012-053796) from the Spanish Ministry of Science and Innovation.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Annis, S. L., & Goodwin, P. H. (1997). Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European Journal Plant Pathology, 103, 1–14.CrossRefGoogle Scholar
  2. Blanco-Ulate, B., Morales-Cruz, A., Amrine, K. C., Labavitch, J. M., Powell, A. L., & Cantu, D. (2014). Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Frontiers in Plant Science, 5, 435.CrossRefGoogle Scholar
  3. Bolarinwa, I. F., Orfila, C., & Morgan, M. R. A. (2014). Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 152, 133–139.CrossRefGoogle Scholar
  4. Bone, K., & Mills, S. (2013). Principles and Practice of Phytotherapy (2nd Ed.), Pages 17–82, Churchill Livingstone (Elsevier Ltd.)Google Scholar
  5. Bostock, R. M., Wilcox, S. M., Wang, G., & Adaskaveg, J. E. (1999). Suppression of Monilinia fructicola cutinase production by peach fruit surface phenolic acids. Physiological and Molecular Plant Pathology, 54, 37–50.CrossRefGoogle Scholar
  6. Brummell, D. A., Dal Cin, V., Lurie, S., Crisosto, C. H., & Labavitch, J. M. (2004). Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. Journal of Experimental Botany, 55, 2041–2052.CrossRefGoogle Scholar
  7. Byrde, R. J., & Fielding, A. H. (1968). Pectin methyl- trans-eliminase as the maceration factor of Sclerotinia fructigena and its significance in brown rot of apple. Journal of General Microbiology, 52, 287–297.CrossRefGoogle Scholar
  8. Byrde, R. J., & Willetts, H. J. (1977). The brown rot fungi of fruit: Their biology and control. Oxford: Pergamon Press.Google Scholar
  9. Calonge, F. D., Fielding, A. H., & Byrde, R. J. W. (1969). Multivesicular bodies in Sclerotinia fructigena and their possible relation to extracellular enzyme secretion. Journal of General Microbiology, 55, 177–184.CrossRefGoogle Scholar
  10. Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plant: Consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 3, 1–30.CrossRefGoogle Scholar
  11. Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J., Simon, A., & Viaud, M. (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 277, 1–10.CrossRefGoogle Scholar
  12. Chou, C., Yu, F., Yu, P., Ho, J., Bostock, R. M., Chung, K., Huang, J., & Lee, M. (2015). Expression of five endopolygalacturonase genes and demonstration that MfPG1 overexpression diminishes virulence in the brown rot pathogen Monilinia fructicola. PLoS One, 10, e0132012.CrossRefGoogle Scholar
  13. Collado, I. G., Hernández-Galán, R., Prieto, V., Hanson, J. R., & Rebordinos, L. G. (1996). Biologically active sesquiterpenoid metabolites from the fungus Botrytis cinerea. Phytochemistry, 41, 513–517.CrossRefGoogle Scholar
  14. Collado, I. G., Aleu, J., Hernandez-Galan, R., & Duran-Patron, R. (2000). Botrytis species: an intriguing source of metabolites with wide ranges of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Current Organic Chemistry, 4, 1261–1286.CrossRefGoogle Scholar
  15. Collado, I. G., Sanchez, A. J., & Hanson, J. R. (2007). Fungal terpene metabolites: Biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Natural Product Reports, 24, 674–686.CrossRefGoogle Scholar
  16. Colmenares, A. J., Aleu, J., Duran-Patron, R., Collado, I. G., & Hernandez- Galan, R. (2002). The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. Journal of Chemical Ecology, 28, 997–1005.CrossRefGoogle Scholar
  17. Dalmais, B., Schumacher, J., Moraga, J., Le Pecheur, P., Tudzynski, B., Collado, I. G., & Viaud, M. (2011). The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Molecular Plant Pathology, 12, 564–579.CrossRefGoogle Scholar
  18. De Cal, A., Sandin-España, P., Martinez, F., Egüen, B., Chien-Ming, C., Lee, M. H., Melgarejo, P., & Prusky, D. (2013). Role of gluconic acid and pH modulation in virulence of Monilinia fructicola on peach fruit. Postharvest Biology and Technology, 86, 418–423.CrossRefGoogle Scholar
  19. Deighton, N., Muckenschnabel, A. J. C., Collado, I. G., & Williamson, B. (2001). Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry, 57, 689–692.CrossRefGoogle Scholar
  20. Ettinger, W. F., Thukral, S. K., & Kolattukudy, P. E. (1987). Structure of cutinase gene, cDNA, and the derived amino-acid-sequence from phytopathogenic fungi. Biochemistry, 26, 7883–7892.CrossRefGoogle Scholar
  21. Garcia-Benitez, C., Melgarejo, P., De Cal, A., & Fontaniella, B. (2016). Microscopic analyses of latent and visible Monilinia fructicola infections in nectarines. PLoS One, 11, e0160675.CrossRefGoogle Scholar
  22. González-Fernández, R., Aloria, K., Valero-Galván, J., Redondo, I., Arizmendi, J. M., & Jorrin-Novo, J. V. (2014). Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. Journal of Proteomics, 97, 195–221.CrossRefGoogle Scholar
  23. Hall, R. (1971). Pathogenicity of Monilinia fructicola. Part II. Penetration of peach leaf and fruit. Journal of Phytopathology, 72, 281–290.CrossRefGoogle Scholar
  24. Hall, R. (1972). Pathogenicity of Monilinia fructicola. Part III. Factors influencing lesion expansion. Journal of Phytopathology, 73, 27–38.CrossRefGoogle Scholar
  25. Hislop, E. C., Keon, J. P. R., & Fielding, A. H. (1979). Effects of pectin lyase from Monilinia fructigena on viability, ultrastructure and localization of acid phosphatase of cultured apple cells. Physiological Plant Pathology, 14, 371–374.CrossRefGoogle Scholar
  26. Hislop, E. C., Paver, J. L., & Keon, J. P. R. (1982). An acid protease produced by Monilinia fructigena in vitro and in infected apple fruits, and its possible role in pathogenesis. Journal of General Microbiology, 128, 799–807.Google Scholar
  27. Horbach, R., Navarro-Quesada, A. R., Knogge, W., & Deising, H. B. (2011). When and how to kill a plant cell: infection strategies of plant pathogenic fungi. Journal of Plant Physiology, 168, 51–62.CrossRefGoogle Scholar
  28. Lee, M. H., & Bostock, R. M. (2006). Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Current Genetics, 49, 309–322.CrossRefGoogle Scholar
  29. Lee, M.-H., & Bostock, R. M. (2007). Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp.: a role for cellular redox? Phytopathology, 97, 269–277.CrossRefGoogle Scholar
  30. Lee, M., Chiu, C., Roubtsova, T., Chou, C., & Bostock, R. M. (2010). Overexpression of a redox-regulated cutinase gene, MfCUT1, increases virulence of the brown rot pathogen Monilinia fructicola on Prunus spp. Molecular Plant Microbe Interaction, 23, 176–186.CrossRefGoogle Scholar
  31. Li, R. G., Rimmer, R., Buchwaldt, L., Sharpe, A. G., Seguin-Swartz, G., & Hegedus, D. D. (2004). Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genetic and Biology, 41, 754–765.CrossRefGoogle Scholar
  32. Meier, U., Graf, H., Hess, M., Kennel, W., Klose, R., Mappes, D., Seipp, D., Stauss, R., Streif, J., & van den Boom, T. (1994). Phänologische entwick-lungsstadien des kernobstes (Malus domestica Borkh. und Pyrus communis L.), des steinobstes (Prunus arten), der johannisbeere (Ribes arten) und der erdbeere (Fragaria × ananassa Duch.). Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 46, 141–153.Google Scholar
  33. Muramatsu, N., Tanaka, K., Asakura, T., & Haji, T. (2004). Changes in cell wall polysaccharides and physical properties of peach (Prunus persica Batsch) fruit during ripening. Journal of the Japanese Society for Horticultural Science, 73, 534–540.CrossRefGoogle Scholar
  34. Ogawa, J. M., Zehr, E. I., & Biggs, A. R. (1995). Brown rot. In J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu, & J. K. Uyemoto (Eds.), Compendium of stone fruit disease (pp. 7–10). St. Paul: American Phytopathological Society.Google Scholar
  35. Parveen, S., Wani, A. H., Bhat, M. Y., Koka, J. A., & Fazili, M. A. (2017). Variability in production of extracellular enzymes by different fungi isolated from rotten pear, peach and grape fruits. Brazilian Journal of Biological Sciences, 4, 259–264.CrossRefGoogle Scholar
  36. Pedras, M. S. C., & Ahiahonu, P. W. K. (2004). Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum. Journal of Chemical Ecology, 30, 2163–2179.CrossRefGoogle Scholar
  37. Pinedo, C., Wang, C. M., Pradier, J. M., Dalmais, B., Choquer, M., Le Pecheur, P., Morgant, G., Collado, I. G., Cane, D. E., & Viaud, M. (2008). Sesquiterpene synthase from Botrydial biosynthetic gene cluster of phytopathogen Botrytis cinerea. ACS Chemical Biology, 3, 791–801.CrossRefGoogle Scholar
  38. Reignault, P., Valette-Collet, O., & Boccara, M. (2008). The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. European Journal Plant Pathology, 120, 1–11.CrossRefGoogle Scholar
  39. Reino, J. L., Hernández-Galán, R., Durán-Patrón, R., & Collado, I. G. (2004). Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. Journal of Phytopathology, 152, 563–566.CrossRefGoogle Scholar
  40. Rexová-Benková, L., & Markovĭc, O. (1976). Pectic enzymes. In R. S. Tipson & D. Horton (Eds.), Advances in carbohydrate Chem and Biochem (Vol. 33, pp. 323–385). New York: Academic Press.Google Scholar
  41. Reyes, F., Martinez, M. J., Lahoz, R., & Archer, S. A. (1984). Characterization as glycerol of an inhibitor of pectin lyases from autolysing cultures of Botrytis cinerea. Transactions of the British Mycological Society, 82, 689–696.CrossRefGoogle Scholar
  42. Riou, C., Freyssinet, G., & Fevre, M. (1991). Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Applied Environmental Microbiology, 57, 1478–1484.Google Scholar
  43. Sassa, T., Nukina, M., Sugiyama, T., & Yamashita, K. (1983). Monilidiols, characteristic and bioactive metabolites of benomyl-resistant strains of Monilinia fructicola. Agricultural and Biological Chemistry., 47, 449–451.Google Scholar
  44. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.CrossRefGoogle Scholar
  45. Shieh, M. T., Brown, R. L., Whitehead, M. P., Cary, J. W., Cotty, P. J., Cleveland, T. E., & Dean, R. A. (1997). Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Applied Environmental Microbiology, 63, 3548–3552.Google Scholar
  46. Siewers, V1., Viaud, M., Jimenez-Teja, D., Collado, I. G., Gronover, C. S., Pradier, J. M., Tudzynski, B., & Tudzynski, P. (2005). Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Molecular Plant Microbe Interaction, 18, 602–612.CrossRefGoogle Scholar
  47. Snedecor, G. W., & Cochram, W. G. (1980). Statistical methods. Ames: Iowa State University: University Press.Google Scholar
  48. Steiner, G. W., & Strobel, G. A. (1971). Helminthosporoside, a host-specific toxin from Helminthosporium sacchari. Journal of Biological Chemistry, 246, 4350–4357.Google Scholar
  49. van Leeuwen, G. C. M., Baayen, R. P., Holb, I. J., & Jeger, M. J. (2002). Distinction of the Asiatic brown rot fungus Monilia polystroma sp nov from M. fructigena. Mycological Research, 106, 444–451.CrossRefGoogle Scholar
  50. Villarino, M., Melgarejo, P., & De Cal, A. (2016). Growth and aggressiveness factors affecting Monilinia spp. survival peaches. International Journal of Food Microbiology, 227, 6–12.CrossRefGoogle Scholar
  51. Wade, G. C., & Cruickshank, R. H. (1992). The establishment and structure of latent infections with Monilinia fructicola on apricots. Journal of Phytopathology, 136, 95–106.CrossRefGoogle Scholar
  52. Waksman, G. (1988). Molecular-cloning of genes expressed specifically during induction of cell-wall degrading enzymes from Sclerotinia sclerotiorum and preliminary identification of a fungal Beta-galactosidase encoding gene by expression in Escherichia coli. Current Genetics, 14, 91–93.CrossRefGoogle Scholar
  53. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., & Bostock, R. M. (2000). Affinity purification and characterization of a cutinase from the fungal plant pathogen Monilinia fructicola (Wint.) honey. Archives of Biochemistry and Biophysics, 382, 31–38.CrossRefGoogle Scholar
  54. Wang, X., Jiang, N., Liu, J., Liu, W., & Wang, G. (2014). The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence, 5, 722–732.CrossRefGoogle Scholar
  55. Wang, Y., Lin, Y., Xiang, L., Osada, H., & Qi, J. (2017). Sesquiterpene glucosides from Shenzhou honey peach fruit showed the anti-aging activity in the evaluation system using yeasts. Bioscience, Biotechnology, and Biochemistry, 81, 1586–1590.CrossRefGoogle Scholar
  56. Wubben, J. P., ten Have, A., van Kan, J. A. L., & Visser, J. (2000). Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Current Genetics, 37, 152–157.CrossRefGoogle Scholar
  57. Xu, X. M., & Robinson, J. D. (2000). Epidemiology of brown rot (Monilinia fructigena) on apple: infection of fruits by conidia. Plant Pathology, 49, 201–206.CrossRefGoogle Scholar
  58. Xu, X. M., Bertone, C., & Berrie, A. (2007). Effects of wounding, fruit age and wetness duration on the development of cherry brown rot in the UK. Plant Pathology, 56, 114–119.Google Scholar
  59. Yeon, K. H., Bong, C. L., Won, K. J., Bae, S. D., Sung, T. P., & Jae, Y. U. (2004). Isolation and partial characterization of phytotoxic mycotoxins produced by Sclerotinia sp., a potential bioherbicide for the control of white clover (Trifoliorum repens). Plant Pathology J, 20, 52–57.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • C. Garcia-Benitez
    • 1
  • P. Melgarejo
    • 1
  • P. Sandin-España
    • 2
  • B. Sevilla-Morán
    • 2
  • A. De Cal
    • 1
    Email author
  1. 1.Department of Plant ProtectionInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
  2. 2.Unit Plant Protection Products, DTEVPFMadridSpain

Personalised recommendations