Advertisement

One-step multiplex RT-PCR for simultaneous detection of four viroids from hop (Humulus lupulus L.)

  • Tanja Guček
  • Jernej Jakše
  • Jaroslav Matoušek
  • Sebastjan RadišekEmail author
Article

Abstract

Hop (Humulus lupulus L.) plants are hosts to several viroids; some of them can be highly aggressive, and their infection can manifest as complete plant dieback. Since molecular detection of multiple viroids can be time consuming and cost inefficient, a reliable one-step multiplex RT-PCR (mRT-PCR) was developed to detect simultaneously all four viroids infecting hops: Hop latent viroid (HLVd), Hop stunt viroid (HSVd), Apple fruit crinkle viroid (AFCVd) and Citrus bark cracking viroid (CBCVd). Several primer pairs were tested on different viroid variants from hops, citruses and grapevines, and from among them, specific primer pairs for detection of hop viroids were selected and confirmed in a single-tube assay. To improve mRT-PCR reliability and validate its effectiveness, nad5 and DRH1 genes were included as an internal control. The specificities of single and mRT-PCR assays for all four viroids were comparable. The sensitivity of mRT-PCR was compared with that of dot-blot hybridization and single RT-PCR assay on biolistically infected hop plants. The results show mRT-PCR to be more sensitive than the dot-blot and slightly less sensitive than the single RT-PCR assay. Furthermore, mRT-PCR was validated using field samples and a group of 135 hop plants, which are used in the certification scheme for planting material propagation, and the method proved to be robust, rapid and simple. Additionally, this approach can be applicable to similar methods of systematic surveys of emerging diseases and epidemiological studies.

Keywords

Hop Humulus lupulus RT-PCR Viroids 

Notes

Acknowledgments

The authors acknowledge the financial support of the Slovenian Research Agency (36371, P4-0077), the Administration of the Republic of Slovenia for Food Safety, Veterinary and Plant Protection, the Czech Ministry of Education (LH14255), and the European Commission (FP7-REGPOT-2012-2013-1 MODBIOLIN No. 316304). The authors would like to express their gratitude to Dr. Luitgardis Seigner, Bavarian State Research Center for Agriculture, Freising, Germany for her careful and critical reading of the manuscript, and to Prof. Dr. Teruo Sano, Faculty of Agriculture and Life Science, Gene Research Center, Hirosaki University, for providing RNA sample of AFCVd.

Compliance with ethical standards

I testify on behalf of all co-authors that:

• Manuscript has not been published elsewhere and is not under consideration by another journal.

• All authors reviewed the manuscript and agree to submit it in the present form.

• All authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves jointly and individually responsible for its content.

Conflict of interest

All authors declare that they have no potential sources of conflict of interest.

Supplementary material

10658_2018_1654_MOESM1_ESM.pdf (49 kb)
ESM 1 (PDF 48.8 kb)

References

  1. Adams, A. N., Barbara, D. J., & Morton, A. (1991). Effects of hop latent viroid on weight and quality of the cones of the hop cultivar wye challenger. Annals of Applied Biology, 118, 126–127.Google Scholar
  2. Barba, M., & James, D. (2017). Quarantine and certification for viroids and viroid diseases. In A. Hadidi, R. Flores, J. W. Randles, & P. Palukaitis (Eds.), Viroids and satellites (pp. 415–424). Academic Press.Google Scholar
  3. Barbara, D. J., Morton, A., Adams, A. N., & Green, C. P. (1990). Some effects of hop latent viroid on two cultivars of hop (Humulus lupulus) in the UK. Annals of Applied Biology, 117, 359–366.Google Scholar
  4. Bernad, L., & Duran-Vila, N. (2006). A novel RT-PCR approach for detection and characterization of citrus viroids. Molecular and Cellular Probes, 20(2), 105–113.  https://doi.org/10.1016/j.mcp.2005.11.001.Google Scholar
  5. Bostan, H., Nie, X., & Singh, R. P. (2004). An RT-PCR primer pair for the detection of Pospiviroid and its application in surveying ornamental plants for viroids. Journal of Virological Methods, 116(2), 189–193.Google Scholar
  6. Chambers, G. A., Donovan, N. J., Bodaghi, S., Jelinek, S. M., & Vidalakis, G. (2018). A novel citrus viroid found in Australia, tentatively named citrus viroid VII. Archives of Virology, 163(1), 215–218.  https://doi.org/10.1007/s00705-017-3591-y.Google Scholar
  7. Di Serio, F., Torchetti, E. M., Flores, R., & Sano, T. (2017). Other apscaviroids infecting pome fruit trees. In A. Hadidi, R. Flores, J. W. Randles, & P. Palukaitis (Eds.), Viroids and satellites (pp. 229–241). Academic Press.Google Scholar
  8. Diener, T. O. (1971). Potato spindle tuber "virus". IV. A replicating, low molecular weight RNA. Virology, 45(2), 411–428.Google Scholar
  9. Eastwell, K. C., & Nelson, M. E. (2007). Occurrence of viroids in commercial hop (Humulus lupulus L.) production areas of Washington state. Plant Health Progress., 8, 1.  https://doi.org/10.1094/PHP-2007-1127-01-RS.Google Scholar
  10. El-Dougdoug, K. A., Osman, M. E., Hayam, S. A., Rehab, A. D., & Reham, M. E. (2010). Biological and molecular detection of HSVd - infecting peach and pear trees in Egypt. Australian Journal of Basic and Applied Sciences, 4, 19–26.Google Scholar
  11. EPPO (2017). Citrus bark cracking viroid. New additions to the EPPO A1 and A2 Lists. https://gd.eppo.int/reporting/article-6126.
  12. Flores, R. (2001). A naked plant-specific RNA ten-fold smaller than the smallest known viral RNA: The viroid. Comptes Rendus de l’Academie des Sciences. Serie III, Sciences de la Vie, 324(10), 943–952.Google Scholar
  13. Flores, R., Hernández, C., Martínez de Alba, A. E., Daròs, J. A., & Di Serio, F. (2005). Viroids and viroid-host interactions. Annual Review of Phytopathology, 43, 117–139.  https://doi.org/10.1146/annurev.phyto.43.040204.140243.Google Scholar
  14. Francis, M. I., Szychowski, J. A., & Semancik, J. S. (1995). Structural sites specific to citrus viroid groups. Journal of General Virology, 76(Pt 5), 1081–1089.Google Scholar
  15. Gambino, G., Navarro, B., Torchetti, E. M., La Notte, P., Schneider, A., Mannini, F., & Di Serio, F. (2014). Survey on viroids infecting grapevine in Italy: Identification and characterization of Australian grapevine viroid and grapevine yellow speckle viroid 2. European Journal of Plant Pathology, 140(2), 199–205.  https://doi.org/10.1007/s10658-014-0458-x.Google Scholar
  16. Gucek, T., Trdan, S., Jakse, J., Javornik, B., Matousek, J., & Radisek, S. (2017). Diagnostic techniques for viroids. Plant Pathology, 66, 339–358.Google Scholar
  17. Hammond, R. W. (2017). Economic significance of viroids in vegetable and field crops. In A. Hadidi, R. Flores, J. W. Randles, & P. Palukaitis (Eds.), Viroids and satellites (pp. 5–14). Academic press.Google Scholar
  18. Hammond, R. W., & Owens, R. A. (2006). Viroids: New and continuing risks for horticultural and agricultural crops. APSnet Features.  https://doi.org/10.1094/APSnetFeature-2006-1106.
  19. Hataya, T., Katsuyuki, H., Suda, N., Nagata, T., Shifang, L., Itoga, Y., Tanikoshi, T., & Shikata, E. (1992). Detection of hop latent viroid (HLVd) using reverse transcription and polymerase chain reaction (RT-PCR). Annals of the Phytopathological Society of Japan, 58, 677–684.Google Scholar
  20. Hataya, T., Tsushima, T., & Sano, T. (2017). Hop Stunt Viroid. In A. Hadidi, R. Flores, J. W. Randles, & P. Palukaitis (Eds.), Viroids and satellites (pp. 199–210). Academic Press.Google Scholar
  21. Ito, T., Ieki, H., & Ozaki, K. (2002a). Simultaneous detection of six citrus viroids and apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. Journal of Virological Methods, 106(2), 235–239.Google Scholar
  22. Ito, T., Ieki, H., Ozaki, K., Iwanami, T., Nakahara, K., Hataya, T., Isaka, M., & Kano, T. (2002b). Multiple citrus viroids in citrus from Japan and their ability to produce exocortis-like symptoms in citron. Phytopathology, 92(5), 542–547.  https://doi.org/10.1094/PHYTO.2002.92.5.542.Google Scholar
  23. Ito, T., Furuta, T., Ito, T., Isaka, M., Ide, Y., & Kaneyoshi, J. (2006). Identification of cachexia-inducible hop stunt viroid variants in citrus orchards in Japan using biological indexing and improved reverse transcription polymerase chain reaction. Journal of General Plant Pathology, 72, 378–382.Google Scholar
  24. Jakse, J., & Radisek, S. (2005). Reestablishment of the identification system for detection of hop latent vioird. Hop bulletin, 12, 49–57.Google Scholar
  25. Jakse, J., Radisek, S., Pokorn, T., Matousek, J., & Javornik, B. (2015). Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathology, 64(4), 831–842.  https://doi.org/10.1111/ppa.12325.Google Scholar
  26. Kappagantu, M., Villamor, D. E. V., Bullock, J. M., & Eastwell, K. C. (2017). A rapid isothermal assay for the detection of hop stunt viroid in hop plants (Humulus lupulus), and its application in disease surveys. Journal of Virological Methods, 245, 81–85.  https://doi.org/10.1016/j.jviromet.2017.04.002.Google Scholar
  27. Kofalvi, S. A., Marcos, J. F., Canizares, M. C., Pallas, V., & Candresse, T. (1997). Hop stunt viroid (HSVd) sequence variants from Prunus species: Evidence for recombination between HSVd isolates. Journal of General Virology, 78, 3177–3186.Google Scholar
  28. Kumar, S., Singh, L., Ram, R., Zaidi, A. A., & Hallan, V. (2014). Simultaneous detection of major pome fruit viruses and a viroid. Indian Journal of Microbiology, 54(2), 203–210.  https://doi.org/10.1007/s12088-013-0431-y.Google Scholar
  29. Kump, B., & Javornik, B. (1996). Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Science, 114, 149–158.Google Scholar
  30. Lavagi, I., Matousek, J., & Vidalakis, G. (2017). Other Cocadviroids. In A. Hadidi, R. Flores, J. W. Randles, & P. Palukaitis (Eds.), Viroids and satellites (pp. 275–288). Academic Press.Google Scholar
  31. Lin, L., Li, R., Mock, R., & Kinard, G. (2011). Development of a polyprobe to detect six viroids of pome and stone fruit trees. Journal of Virological Methods, 171(1), 91–97.  https://doi.org/10.1016/j.jviromet.2010.10.006.Google Scholar
  32. Lin, L. M., Li, R. H., Mock, R., & Kinard, G. (2012). One-step multiplex RT-PCR for simultaneous detection of four pome tree viroids. European Journal of Plant Pathology, 133(3), 765–772.  https://doi.org/10.1007/s10658-012-9956-x.Google Scholar
  33. Lu, W. X., Zhang, Z. X., Xu, P. S., Liu, S. X., Wang, H. Q., Jiang, D. M., & Li, S. F. (2012). Simultaneous detection of three viroid species infecting hops in China by multiplex RT-PCR. Journal of Phytopathology, 160(6), 308–310.  https://doi.org/10.1111/j.1439-0434.2012.01898.x.Google Scholar
  34. Maloukh, L., Matousek, J., Bockstaele, E. V., & Roldan-Ruiz, I. (2009). Housekeeping gene selection for real-time PCR normalization in female hop (Humulus lupulus L) tissues. Journal of Plant Biochemistry and Biotechnology, 18, 53–58.Google Scholar
  35. Matousek, J., & Patzak, J. (2000). A low transmissibility of hop latent viroid through a generative phase of Humulus lupulus L. Biologia Plantarum, 43(1), 145–148.  https://doi.org/10.1023/A:1026531819806.Google Scholar
  36. Matousek, J., Trnena, L., Svoboda, P., & Ruzkova, P. (1994). Analysis of hop latent viroid (HLVd) in commercial hop clones in Czech republic. Rostlinna vyroba, 40, 973–983.Google Scholar
  37. Matousek, J., Orctová, L., Patzak, J., Svoboda, P., & Ludvikova, I. (2003). Molecular sampling of hop stunt viroid (HSVd) from grapevines in hop production areas in the Czech Republic and hop protection. Plant Soil and Environment, 49(4), 168–175.Google Scholar
  38. Matousek, J., Orctová, L., Steger, G., & Riesner, D. (2004). Biolistic inoculation of plants with viroid nucleic acids. Journal of Virological Methods, 122(2), 153–164.  https://doi.org/10.1016/j.jviromet.2004.08.011.Google Scholar
  39. Matousek, J., Siglová, K., Jakse, J., Radisek, S., Brass, J. R. J., Tsushima, T., Gucek, T., Duraisamy, G. S., Sano, T., & Steger, G. (2017). Propagation and some physiological effects of Citrus bark cracking viroid and apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). Journal of Plant Physiology, 213, 166–177.  https://doi.org/10.1016/j.jplph.2017.02.014.Google Scholar
  40. Menzel, W., Jelkmann, W., & Maiss, E. (2002). Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. Journal of Virological Methods, 99(1–2), 81–92.Google Scholar
  41. Mishra, A. K., Duraisamy, G. S., Matousek, J., Radisek, S., Javornik, B., & Jakse, J. (2016). Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics, 17(1), 919.  https://doi.org/10.1186/s12864-016-3271-4. Google Scholar
  42. Mumford, R. A., Walsh, K., & Boonham, N. (2000). A comparison of molecular methods for the routine detection of viroids. Bulletin OEPP/EPPO Bulletin, 30, 431–435.Google Scholar
  43. Murcia, N., Hashemian, S. M. B., Serra, P., Pina, J. A., & Duran-Vila, N. (2015). Citrus viroids: Symptom expression and performance of Washington navel sweet orange trees grafted on Carrizo citrange. Plant Disease, 99, 125–136.Google Scholar
  44. Nakahara, K., Hataya, T., & Uyeda, I. (1998). Inosine 5′-triphosphate can dramatically increase the yield of NASBA products targeting GC-rich and intramolecular base-paired viroid RNA. Nucleic Acids Research, 26(7), 1854–1856.Google Scholar
  45. Nakahara, K., Hataya, T., & Uyeda, I. (1999). A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridization and RT-PCR. Journal of Virological Methods, 77(1), 47–58.Google Scholar
  46. Patzak, J., Matousek, J., Krofta, K., & Svoboda, P. (2001). Hop latent viroid (HLVd)-caused pathogenesis: Effects of HLVd infection on lupulin composition of meristem culture-derived Humulus lupulus. Biologia Plantarum, 44, 579–585.Google Scholar
  47. Pethybridge, S. J., Hay, F. S., Barbara, D. J., Eastwell, K. C., & Wilson, C. R. (2008). Viruses and viroids infecting hop: Significance, epidemiology, and management. Plant Disease, 92(3), 324–338.  https://doi.org/10.1094/PDIS-92-3-0324.Google Scholar
  48. Pokorn, T., Radisek, S., Javornik, B., Stajner, N., & Jakse, J. (2017). Development of hop transcriptome to support research into host-viroid interactions. PLoS One, 12(9), e0184528.  https://doi.org/10.1371/journal.pone.0184528.Google Scholar
  49. Puchta, H., Ramm, K., & Sänger, H. L. (1988). The molecular structure of hop latent viroid (HLV), a new viroid occurring worldwide in hops. Nucleic Acids Research, 16(10), 4197–4216.Google Scholar
  50. Radisek, S., Majer, A., Jakse, J., Javornik, B., & Matousek, J. (2012). First report of hop stunt viroid infecting hop in Slovenia. Plant Disease, 96(4), 592–593.  https://doi.org/10.1094/PDIS-08-11-0640-PDN.Google Scholar
  51. Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2006). Variants of peach latent mosaic viroid inducing peach calico: Uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(Pt 1), 231–240.  https://doi.org/10.1099/vir.0.81356-0.Google Scholar
  52. Sano, T. (2003). Hop stunt viroid. In A. Hadidi, R. Flores, J. Randles, & J. Semancik (Eds.), Viroids (pp. 207–212). Australia: CSIRO Publishing. Cllingwood.Google Scholar
  53. Sano, T. (2013). History, origin, and diversity of hop stunt disease and hop stunt viroid. Acta Horticulturae, 1010, ISHS, 87‑96.Google Scholar
  54. Sano, T., Hataya, T., & Shikata, E. (1988). Complete nucleotide sequence of a viroid isolated from Etrog citron, a new member of hop stunt viroid group. Nucleic Acids Research, 16(1), 347.Google Scholar
  55. Sano, T., Mimura, R., & Ohshima, K. (2001). Phylogenetic analysis of hop and grapevine isolates of hop stunt viroid supports a grapevine origin for hop stunt disease. Virus Genes, 22(1), 53–59.Google Scholar
  56. Sano, T., Yoshida, H., Goshono, M., Monma, T., Kawasaki, H., & Ishizaki, K. (2004). Characterization of a new viroid strain from hops: Evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology, 70, 181–187.Google Scholar
  57. Sasaki, M., & Shikata, E. (1977). On some properties of hop stunt disease agent, a viroid. Proceedings of the Japan Academy, Ser. B, 53, 109–112.Google Scholar
  58. Semancik, J. S., & Vidalakis, G. (2005). The question of Citrus viroid IV as a cocadviroid. Archives of Virology, 150(6), 1059–1067.  https://doi.org/10.1007/s00705-005-0499-8.Google Scholar
  59. Stajner, N., Cregeen, S., & Javornik, B. (2013). Evaluation of reference genes for RT-qPCR expression studies in hop (Humulus lupulus L.) during infection with vascular pathogen verticillium albo-atrum. PLoS One, 8(7), e68228.  https://doi.org/10.1371/journal.pone.0068228.Google Scholar
  60. Verhoeven, J. T. J., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.Google Scholar
  61. Vernière, C., Perrier, X., Dubois, C., Dubois, A., Botella, L., Chabrier, C., Bové, J. M., & Duran Vila, N. (2004). Citrus viroids: Symptom expression and effect on vegetative growth and yield of clementine trees grafted on trifoliate orange. Plant Disease, 88, 1189–1197.Google Scholar
  62. Vernière, C., Perrier, X., Dubois, C., Dubois, A., Botella, L., Chabrier, C., Bové, J. M., & Duran Vila, N. (2006). Interactions between citrus viroids affect symptom expression and field performance of clementine trees grafted on trifoliate orange. Phytopathology, 96(4), 356–368.  https://doi.org/10.1094/PHYTO-96-0356.Google Scholar
  63. Wang, X. F., Zhou, C. Y., Tang, K. Z., Zhou, Y., & Li, Z. A. (2009). A rapid one-step multiplex RT-PCR assay for the simultaneous detection of five citrus viroids in China. European Journal of Plant Pathology, 124(1), 175–180.  https://doi.org/10.1007/s10658-008-9386-y.Google Scholar
  64. Wang, J., Boubourakas, I. N., Voloudakis, A. E., Agorastou, T., Magripis, G., Rucker, T. L., Kyriakopoulou, P. E., & Vidalakis, G. (2013). Identification and characterization of known and novel viroid variants in the Greek national citrus germplasm collection: Threats to the industry. European Journal of Plant Pathology, 137, 17–27.Google Scholar
  65. Zhang, Y., Yin, J., Jiang, D., Xin, Y., Ding, F., Deng, Z., Wang, G., Ma, X., Li, F., Li, G., Li, M., Li, S., & Zhu, S. (2013). A universal oligonucleotide microarray with a minimal number of probes for the detection and identification of viroids at the genus level. PLoS One, 8(5), e64474.  https://doi.org/10.1371/journal.pone.0064474.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Tanja Guček
    • 1
  • Jernej Jakše
    • 2
  • Jaroslav Matoušek
    • 3
  • Sebastjan Radišek
    • 1
    Email author
  1. 1.Slovenian Institute of Hop Research and BrewingŽalecSlovenia
  2. 2.Department of Agronomy, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Institute of Plant Molecular BiologyBiology Centre ASCR v.v.iČeské BudĕjoviceCzech Republic

Personalised recommendations