Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 4, pp 1299–1315 | Cite as

Symptomology and yield impact of pea necrotic yellow dwarf virus (PNYDV) in faba bean (Vicia faba L. minor)

  • Helmut SauckeEmail author
  • D. Uteau
  • K. Brinkmann
  • H. Ziebell
Article
  • 209 Downloads

Abstract

We surveyed 33 symptomatic faba bean sites in central Germany towards the end of the growing season 2016 to analyse the suspected virus spectrum. All sites displayed plants with characteristic symptoms and had distinct funnel-shaped patches with a severely affected centre. The central core consisted of stunted, prematurely senescent plants. Symptomatic foci were scattered at random over a largely symptomless field. At two exemplary investigation sites we combined ground based yield assessments with remote sensing techniques to describe disease-loss relationships. Based on low altitude true-colour aerial imaging data, symptomatic patches were categorised into: (i) severely affected blackish core region, (ii) yellowish symptomatic periphery, and (iii) a corresponding non-symptomatic reference patch. Serological tests revealed PNYDV (Pea necrotic yellow dwarf virus) together with PEMV (Pea enation mosaic virus) as dominant and equally abundant viruses. However, because PNYDV was significantly more restricted to the focal core than PEMV, we perceived PNYDV to be the causal agent for this apparently new symptom pattern in faba bean. As both viruses are vectored persistently by leguminous aphids, the observed symptom gradient within individual foci mirrored the epidemiological development over time, starting from an initial infection point and expanding towards the periphery via secondary virus spread to successively maturing and less susceptible plants. For each investigation site the segmented symptomatic surface of category (i) was 0.8 and 0.4%, for (ii) 20.5 and 6.4%, respectively. Combining the relative yield level for each symptom category with its respective surface, the overall yield gap at the field scale was extrapolated to 4.1 and 9.2% for grain yield and for 3.9 and 1.2% for crude protein. In the symptomatic core category, TKWs (thousand kernel weights) were halved due to enhanced proportions of shriveled grain. Because PNYDV-related yield decline was determined by the number, relative surface and disease intensity of individual foci, remote sensing techniques can offer valuable options for monitoring, loss assessment and agricultural decision-making.

Keywords

Pea necrotic yellow dwarf virus Yield True colour images Remote sensing Grain legumes 

Notes

Acknowledgements

We greatly appreciate the help of Angelika Sieg-Müller, Oriana Köhler and Lisa Husmann for their excellent diagnostic contribution in the JKI lab and we are grateful to Eduard Beck for flying the remote controlled hexacopter in North Hesse. Many thanks for the dedication and friendly support in analysing raw protein content by Christiane Jatsch, Department of Animal Nutrition and Animal Health. Our thanks go also to the numerous students of the University Kassel-Witzenhausen for extensive yield assessments.

Compliance with ethical standards

The authors declare their compliance with Ethical Standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Humans and animal studies

This research did not involve experiments requiring a notification and permitting procedure with neither Humans and/or Animals nor genetic engineering research.

Informed consent

Informed consent? yes, the authors agree with the EJPP procedure.

References

  1. Abraham, A. D., Varrelmann, M., & Vetten, H. J. (2012). Three distinct nanoviruses, one of which represents a new species, infect faba bean in Ethiopia. Plant Disease, 96(7), 1045–1053.CrossRefGoogle Scholar
  2. Adler, K., & Müntz, K. (1983). Origin and development of protein bodies in cotyledons of Vicia faba: Proposal of an uniform mechanism. Planta, 157, 401–410.CrossRefGoogle Scholar
  3. Bailey, S. M., Irwin, M. E., Kampmeier, G. E., Eastman, C. E., & Hewings, A. D. (1995). Physical and biological perturbations: their effect on the movement of apterous Rhopalosiphum padi (Homoptera: Aphididae) and localized spread of barley yellow dwarf virus. Environmental Entomology, 24(1), 24–33.CrossRefGoogle Scholar
  4. Bailiss, K. W., & Senayanyake, S. (1984). Virus infection and reproductive losses in faba bean (Vicia fabae L.). Plant Pathology, 33, 185–192.CrossRefGoogle Scholar
  5. Biddle, A. J., Cattlin, N. D., & Kraft, J. M. (2007). Pests, diseases, and disorders of peas and beans. London: Academic Press.CrossRefGoogle Scholar
  6. BMEL. (2016a). Beans, Peas & Co. Federal Ministry of Food and Agriculture: (BMEL). http://www.bmel.de/SharedDocs/Downloads/EN/Publications/ProteinCropStrategy.pdf?__blob=publicationFile. Accessed 20 June 2017.
  7. BMEL (2016b). Protein Crop Strategy Federal Ministry of Food and Agriculture (BMEL). http://www.bmel.de/EN/Agriculture/Plants/_Texte/Eiweisspflanzenstrategie.html. Accessed 20 June 2017.
  8. Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107.CrossRefGoogle Scholar
  9. Boulter, D. (1981). Biochemistry of storage protein synthesis and deposition in the developing legume seed. Advances in Botanical Research, 9, 1–31.CrossRefGoogle Scholar
  10. Brault, V., Uzest, M., Monsion, B., Jacquot, E., & Blanc, S. (2010). Aphids as transport devices for plant viruses. Comptes Rendus Biologies, 333, 524–538.CrossRefGoogle Scholar
  11. Chen, W., Sharma, H. C., & Muehlbauer, F. J. (Eds.). (2011). Compendium of chickpea and lentil diseases and pests. St. Paul: APS Press.Google Scholar
  12. Cockbain, A. J. (1980). Vicia faba: Feeding value, Processing and Viruses (iruses of spring sown field beans (Vicia faba L.) in Great Britain). Cambridge: E.E.C. Seminar.Google Scholar
  13. Cockbain, A. J. (1983). Viruses and virus-like diseases of Vicia faba L. In The faba bean (Vicia faba L.) (pp. 421–462). Cambridge, UK: University Press.Google Scholar
  14. Cockbain, A. J., & Costa, C. L. (1973). Comparative transmission of bean leaf roll and pea enation mosaic viruses by aphids. Annals of Applied Biology, 73(2), 167–176.CrossRefGoogle Scholar
  15. Cui, D., Zhang, Q., Zhao, Y., & Hartmann, G. L. (2009). Detection of soybean rust using a multispectral image sensor. Sensing and Instrumentation for Food Quality and Safety, 3(1), 49–56.CrossRefGoogle Scholar
  16. Döring, T. F., & Chittka, L. (2007). Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 1(1), 3–16.CrossRefGoogle Scholar
  17. Döring, T. F., & Röhrig, K. (2016). Behavioural response of winged aphids to visual contrasts in the field. Annals of Applied Biology, 168(3), 421–434.CrossRefGoogle Scholar
  18. Ehrhardt, P., & Schmutterer, H. (1964). Untersuchungen über die Beziehungen zwischen dem Enationenvirus der Erbse und seinen Vektoren. I. Übertragungsversuche mit verschiedenen, an viruskranken Vicia faba-Pflanzen aufgewachsenen Blattlausarten. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz, 71, 381–394.Google Scholar
  19. FAO. (2016). 2016 international year of pulses: Nutritious seeds for a sustainable future. Food and agriculture Organization of the United Nations (FAO). http://www.fao.org/pulses-2016/en/. Accessed 20 June 2017.
  20. Froehlich, G. (1962). Das Verhalten der Grünen Erbsenblattlaus Acyrthosiphon pisum Harris gegenüber verschiedenen Wirtspflanzen und Temperaturveränderungen. Zeitschrift für Angewandte Entomologie, 51, 55–68.CrossRefGoogle Scholar
  21. Gaafar, Y., Grausgruber-Gröger, S., & Ziebell, H. (2016). Vicia faba, V. sativa, and Lens culinaris as new hosts for Pea necrotic yellow dwarf virus in Germany and Austria. New Disease Reports, 34, 28.CrossRefGoogle Scholar
  22. Gaafar, Y., Timchenko, T., & Ziebell, H. (2017). First report of Pea necrotic yellow dwarf virus in the Netherlands. New Disease Reports, 35,, 23.Google Scholar
  23. Garcia, J., & Barbedo, A. (2017). A new automatic method for disease symptom segmentation in digital photographs of plant leaves. European Journal of Plant Pathology, 147, 349–364.CrossRefGoogle Scholar
  24. Greaves, D. A. (1983). Identification of barley yello dwarf virus and cereal aphid infestations in winter wheat by aerial photograph. Plant Pathology, 32, 159–172.CrossRefGoogle Scholar
  25. Grigoras, I., Gronenborn, B., & Vetten, H. J. (2010). First report of a nanovirus disease of pea in Germany. Plant Disease, 94, 642 (2010).  https://doi.org/10.1094/PDIS-94-5-0642C .CrossRefGoogle Scholar
  26. Grigoras, I., Ginzo, A., Martin, D. P., Varsani, A., Romero, J., Mammadov, A. C., et al. (2014). Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. Journal of General Virology, 95, 1178–1191.CrossRefGoogle Scholar
  27. Habekuß, A., Riedel, C., Schliephake, E., & Ordon, F. (2009). Breeding for resistance to insect-transmitted viruses in barley – an emerging challenge due to global warming. Journal of Cultivated Plants, 61(2), 53–61.Google Scholar
  28. Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hullée, M., et al. (2007). Environmental change and the phenology of European aphids (8), 1550–1564.Google Scholar
  29. Hebblethwaite, P. D. (1983). The faba bean (Vicia faba L.) a basis for improvement. London: Butterworths.Google Scholar
  30. Hoffmann, G. M., & Schmutterer, H. (1983). Parasitäre Krankheiten und Schädlinge an landwirtschaftlichen Kulturpflanzen (1st ed.), 438–442. Ulmer.Google Scholar
  31. Hogenhout, S. A., Ammar, E. D., Whitefield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359.CrossRefGoogle Scholar
  32. Hullé, M., Cœur d’Acier, A., Bankhead-Dronnet, S., & Harrington, R. (2010). Aphids in the face of global changes. Comptes Rendus Biologies, 333, 497–503.  https://doi.org/10.1016/j.crvi.2010.03.005 .CrossRefGoogle Scholar
  33. Jones, R.A.C. (2004). Using epidemiological information to develop effective integrated virus disease management strategies. In: Virus Research 100, S. 5–30.Google Scholar
  34. Johnson, B. (1958). Factors affecting the locomotor and settling responses of aphids. Animal Behaviour, 6, 9–26.CrossRefGoogle Scholar
  35. Kapur, J. N., Sahoo, P. K., & Wong, A. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Graphical Models and Image Processing, 29(3), 273–285.CrossRefGoogle Scholar
  36. King, A., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (Eds.). (2012). Virus taxonomy: Classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Amsterdam: Elsevier.Google Scholar
  37. Kraft, J. M., & Pfleger, F. L. (2001). Compendium of pea diseases and pests (Vol. 2). St. Paul: APS Press.Google Scholar
  38. Kring, J. B. (1972). Flight behaviour of aphids. Annual Review of Entomology, 17, 461–492.CrossRefGoogle Scholar
  39. Krüssel, S. (pers. com. 2017). Auftreten von Viruskrankheiten und Vektoren in Leguminosen in Niedersachsen. Berichte aus den Bundesländern zum Auftreten von Schädlingen in Getreide, Mais und Leguminosen, 27. Tagung des Arbeitskreises „Schädlinge in Getreide und Mais“, Deutsche Phytomedizinische Gesellschaft, Braunschweig, pers. com. February, 16.Google Scholar
  40. Lampkin, N. (1994). Organic farming (Vol. 3). Ipswich: Farming Press.Google Scholar
  41. Lenz, M. (pers. com. 2016). Biologie und Auftreten von Virosen in Körnerleguminosen. Anbau-Sortenempfehlungen & Virusproblematik, Aktuelle Anbauinformationen zu Körnererbse und Ackerbohne, Bad Hersfeld, pers. com. December, 14.Google Scholar
  42. Madden, L. V., Jeger, M. J., & van den Bosch, F. (2000). A theoretical assessment of the effects of vector-virus transmission mechanism on plant virus disease epidemics, 90(6), 576–594.Google Scholar
  43. Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133, 197–209.CrossRefGoogle Scholar
  44. Makkouk, K. M., & Kumari, S. G. (2009). Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa. Virus Research, 141, 209–218.CrossRefGoogle Scholar
  45. Meier, U. (2001). Entwicklungsstadien mono- und dicotyler Pflanzen, BBCH-Monograph (2nd ed.). Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
  46. Moericke, V. (1952). Farben als Landereize für geflügelte Blattläuse (Aphidoidea). Zeitschrift für Naturforschung, 7, 304–309.CrossRefGoogle Scholar
  47. Moericke, V. (1955). Über die Lebensgewohnheiten der geflügelten Blattläuse (Aphidina) unter besonderer Berücksichtigung des Verhaltens beim Landen. Zeitschrift für Angewandte Entomologie, 37, 29–91.CrossRefGoogle Scholar
  48. Nutter, F., van Rij, N., Eggenberger, S. K., & Holah, N. (2010). Spatial and temporal dynamics of plant pathogens. In E. C. Oerke, R. Gerhards, G. Menz, & R. A. Sikora (Eds.), Precision crop protection—the challenge and use of heterogeneity (pp. 27–50). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  49. Patrick, J. W., & Stoddard, F. L. (2010). Physiology of flowering and grain filling in faba bean. Field Crops Research, 115, 234–242.CrossRefGoogle Scholar
  50. Perring, T. M., Gruenhagen, N. M., & Farrar, C. A. (1999). Management of plant viral diseases through chemical control of insect vectors. Annual Review of Entomology, 44, 457–481.CrossRefGoogle Scholar
  51. Roberts, J., Hodgson, C. J., Jackai, L., Thottappilly, G., & Singh, S. R. (1993). Interaction between two synthetic pyrethroids and the spread of two non-persistent viruses in cowpea. Annals of Applied Biology, 122(1), 57–67.CrossRefGoogle Scholar
  52. Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, N. R., & Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. European Journal of Agronomy, 70, 112–123.CrossRefGoogle Scholar
  53. SAS INSTITUTE Inc. (1989). SAS© Procedures Guide, Version 6. Cary, NC (3).Google Scholar
  54. SAS INSTITUTE Inc. (1990). SAS/STAT© Users Guide, Version 6. Cary, NC (4).Google Scholar
  55. Smyrnioudis, I., Harrington, R., Clark, S. J., & Katis, N. (2007). The effect of natural enemies on the spread of barley yellow dwarf virus (BYDV) by Rhopalosiphum padi (Hemiptera: Aphididae). Bulletin of Entomological Research, 91(4), 301–306.CrossRefGoogle Scholar
  56. Sylvester, E. S. (1989). Viruses transmitted by aphids. In A. K. Minks & P. Harrewijn (Eds.), Aphids – Their biology, natural enemies and control (pp. 65–88). Amsterdam: Elsevier.Google Scholar
  57. Teng, P. S. (1990). Crop loss assessment: a review of representative approaches and current technology In International Rice Research Institute (Ed.), International Workshop on Crop Loss Assessment to Improve Pest Management in Rice and Rice-based Cropping Systems in South and Southeast Asia, IRRI, Manila, 11–17 October 1987 (pp. 19–38). Manila, Philippines.Google Scholar
  58. Tillmann, P. J., Darnier, P., Dieterle, H. H., & Phillipps, P. (2002). Einzel−/Mischfutteruntersuchung mittels NIRS Erfahrungen, Probleme: Jahrestagung 2002 in Klosterneuburg.Google Scholar
  59. Tsai, J. H., Bath, J. E., & Egbokwe, E. C. (1972). Biological and transmission characteristics of Acyrthosiphon pisum biotypes efficient and inefficient as vectors of pea enation mosaic virus. Annals of the Entomological Society of America, 65, 1114–1119.CrossRefGoogle Scholar
  60. VDLUFA (1997). Methodenbuch III. Die chemische Untersuchung von Futtermitteln. Darmstadt: Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten e. V. (VDLUFA), VDLUFA-Verlag.Google Scholar
  61. Vetten, H. J., Dale, J. L., Grigoras, I., Groenenborn, B., Harding, R., Randless, J. W., et al. (2012). Part II - single stranded DNA viruses: Family Nanoviridae. In A. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus taxonomy: Classification and nomenclature of viruses. Ninth report of the international committee on taxonomy of viruses (pp. 395–404). Amsterdam: Elsevier.Google Scholar
  62. Wagner, F., Prediger, G., Tiggermann, B., & Schmidt, I. (2007). Der Feldversuch – Durchführung und Technik (3rd ed.). Bad Hersfeld: Selbstverlag Fritz Wagner.Google Scholar
  63. WIN ISI 1.5. (2000). ISI WINDOWS. Near-Infrared Software, The Complete Software Solution for Routine Analysis, Robust Calibration and Networking, ISI (Infrasoft International). LLC, Port Matilda, PA, USA.Google Scholar
  64. Ziebell, H. (2016). Die Virussituation an Leguminosen im Jahr 2016. In G. F. Backhaus, C. Büttner, F. Cramer, H. B. Deising, B. Märländer, F. Ordon, et al. (Eds.), "Pflanzenschutz: Effizienz und Vielfalt", Halle/Saale, 20.-23. Sept (p. 285). Berlin: Arno Brynda GmbH.Google Scholar
  65. Ziebell, H. (2017). Die Virusepidemie an Leguminosen 2016 eine Folge des Klimawandels? Journal für Kulturpflanzen, 69(2), 64–68.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Helmut Saucke
    • 1
    Email author
  • D. Uteau
    • 2
  • K. Brinkmann
    • 3
  • H. Ziebell
    • 4
  1. 1.Faculty of Organic Agricultural Sciences, Department of Ecological Crop ProtectionUniversity of KasselWitzenhausenGermany
  2. 2.Faculty of Organic Agricultural Sciences, Department of Soil ScienceUniversity of KasselWitzenhausenGermany
  3. 3.Faculty of Organic Agricultural Sciences, Organic Plant Production and Agroecosystems Research in the Tropics and SubtropicsUniversity of KasselWitzenhausenGermany
  4. 4.Julius Kuehn Institute, Institute for Epidemiology and Pathogen DiagnosticsBraunschweigGermany

Personalised recommendations