Advertisement

Rapid diagnosis of Ditylenchus destructor by loop-mediated isothermal amplification assay based on 28S rRNA sequences

  • Shan-Wen Ding
  • Si-Hua Yang
  • Wen-Jia Wu
  • Hui Xie
  • Chun-Ling XuEmail author
Article
  • 45 Downloads

Abstract

Ditylenchus destructor is an important plant pathogenic nematode in agricultural production and is listed as a quarantine pest by many countries and regions. Traditional identification depending on morphological characteristics requires taxonomic expertise and is difficult to apply for rapid identification of plant nematode species. Currently, with the development of molecular biology, many novel tools have been explored for the rapid identification of plant nematodes. In this study, loop-mediated isothermal amplification (LAMP) was used to conduct rapid detection of D. destructor from various origins. First, a set of new LAMP specific primers (DdBIP, DdFIP, DdF3, DdB3 and DdLF) were designed based on 28S rRNA sequences of D. destructor, and LAMP reaction conditions were optimized to use concentrations of 6.0 mmol L−1 Mg2+, 1.0 mmol L−1 dNTPs, and 0.2 U μL−1 Bst 2.0 DNA polymerase, performed at 65 °C for 50 min. Second, the specificity, stability and sensitivity of this method were confirmed using DNA from a single egg and juvenile, male and female nematodes of D. destructor and from D. destructor mixed with various nematode species and soil and tissue samples. The amplification products were detected by checking the ladder-like bands using electrophoresis and visualizing mixture colour changes using SYBR Green I dye. The results showed that the LAMP method could not only detect and identify a single egg and juvenile, female and male nematodes and different populations from different hosts and geographical origins of D. destructor but also directly detect D. destructor from mixed samples of various nematode species, plant tissue and soil. The sensitivity of LAMP amplification was a 1000-fold dilution of the template DNA from an individual female nematode. This report is the first to use LAMP to directly detect D. destructor from samples mixed with various nematode species and with plant tissue and soil.

Keywords

Ditylenchus destructor LAMP Detection 28S rRNA sequences 

Notes

Acknowledgements

This research was supported by the grants from the Agricultural Technology Research and Development Project of Guangdong Province of China and the Detection and Control of Crop Disease and Pests Project of China (No. 101821301082351011).

Funding

This study was funded by the grants from the Agricultural Technology Research and Development Project of Guangdong Province of China and the Detection and Control of Crop Disease and Pests Project of China (No. 101821301082351011).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Bae, C. H., Szalanski, A. L., & Robbins, R. T. (2009). Genetic variation of Hoplolaimus columbus populations in the United States using PCR-RFLP analysis of nuclear rDNA ITS regions. Journal of Nematology, 41(3), 187–193.PubMedPubMedCentralGoogle Scholar
  2. Basson, S., De Waele, D. G. M. A., & Meyer, A. J. (1991). Population dynamics of Ditylenchus destructor on peanut. Journal of Nematology, 23(4), 485–490.PubMedPubMedCentralGoogle Scholar
  3. Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., ... Vida, J. T. (1998). A molecular evolutionary framework for the phylum nematode. Nature, 392(6671), 71−75.Google Scholar
  4. Curran, J., Baillie, D. L., & Webster, J. M. (1985). Use of genomic DNA restriction fragment length differences to identify nematode species. Parasitology, 90(1), 137–144.CrossRefGoogle Scholar
  5. Douda, O., Marek, M., Zouhar, M., & Ryšánek, P. (2013). Insights into the structure and phylogeny of the 28S rRNA expansion segments D2 and D3 of the plant-infecting nematodes from the genus Ditylenchus (Nematoda: Anguinidae). Phytopathologia Mediterranea, 52(1), 84–97.Google Scholar
  6. Goodey, J. B. (1952). The influence of the host on the dimensions of the plant parasitic nematode, Ditylenchus destructor. Annals of Applied Biology, 39(4), 468–474.CrossRefGoogle Scholar
  7. He, X. F., Peng, H., Ding, Z., He, W. T., Hung, W. K., & Peng, D. L. (2013). Loop-mediated isothermal amplification assay for rapid diagnosis of Meloidogyne enterolobii directly from infected plants. Scientia Agricultura Sinica, 46(3), 534–544.Google Scholar
  8. Imai, M., Ninomiya, A., Minekawa, H., Notomi, T., Ishizaki, T., Tashiro, M., & Odagiri, T. (2006). Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine, 24(44–46), 6679–6682.CrossRefPubMedGoogle Scholar
  9. Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., ... MacLeod, A. (2016). Risk to plant health of Ditylenchus destructor for the EU territory. EFSA Journal, 14(12), 4602.Google Scholar
  10. Jeszke, A., Dobosz, R., & Obrępalska-Stęplowska, A. (2015). A fast and sensitive method for the simultaneous identification of three important nematode species of the genus Ditylenchus. Pest Management Science, 71(2), 243–249.CrossRefPubMedGoogle Scholar
  11. Jian, H., Niu, J. H., Guo, Q. S., Liu, Q., Chen, C. L. (2011). A kit for detecting Ditylenchus destructor based on Loop-mediated isothermal amplification and its application. Chinese patent: CN102260746A.Google Scholar
  12. Joyce, S. A., Reid, A., Driver, F., & Curran, J. (1994). Application of polymerase chain reaction (PCR) methods to identification of entomopathogenic nematodes. Cost, 812, 178–187.Google Scholar
  13. Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N., & Kanzaki, N. (2009a). A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology, 99(12), 1365–1369.CrossRefPubMedGoogle Scholar
  14. Kikuchi, T., Li, H., Karim, N., Kennedy, M. W., Moens, M., & Jones, J. T. (2009b). Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematology, 11(3), 355–364.CrossRefGoogle Scholar
  15. Kuboki, N., Inoue, N., Sakurai, T., Di Cello, F., Grab, D. J., Suzuki, H., et al. (2003). Loop-mediated isothermal amplification for detection of African trypanosomes. Journal of Clinical Microbiology, 41(12), 5517–5524.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Leal, I., Allen, E., Foord, B., Anema, J., Reisle, C., Uzunovic, A., Varga, A., & James, D. (2015). Detection of living Bursaphelenchus xylophilus in wood, using reverse transcriptase loop-mediated isothermal amplification (RT-LAMP). Forest Pathology, 45(2), 134–148.CrossRefGoogle Scholar
  17. Li, C., Moore-Kucera, J., Lee, J., Corbin, A., Brodhagen, M., Miles, C., & Inglis, D. (2014). Effects of biodegradable mulch on soil quality. Applied Soil Ecology, 79, 59–69.CrossRefGoogle Scholar
  18. Maeda, H., Kokeguchi, S., Fujimoto, C., Tanimoto, I., Yoshizumi, W., Nishimura, F., & Takashiba, S. (2005). Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method. FEMS Immunology & Medical Microbiology, 43(2), 233–239.CrossRefGoogle Scholar
  19. Marek, M., Zouhar, M., Douda, O., Mazakova, J., & Rysanek, P. (2010). Bioinformatics-assisted characterization of the ITS1-5.8S-ITS2 segments of nuclear rRNA gene clusters, and its exploitation in molecular diagnostics of European crop-parasitic nematodes of the genus Ditylenchus. Plant Pathology, 59(5), 931–943.CrossRefGoogle Scholar
  20. Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229.CrossRefPubMedGoogle Scholar
  21. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63.CrossRefPubMedPubMedCentralGoogle Scholar
  22. OEPP/EPPO. (2017). PM7/87(2) Ditylenchus destructor and Ditylenchus dipsaci. Bulletin OEPP/EPPO Bulletin, 47(3), 401–419.CrossRefGoogle Scholar
  23. Oliveira, C. M. G. D., Monteiro, A. R., & Blok, V. C. (2011). Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. Tropical Plant Pathology, 36(2), 65–73.Google Scholar
  24. Peng, H., Peng, D., Hu, X., He, X., Wang, Q., Huang, W., & He, W. (2012). Loop-mediated isothermal amplification for rapid and precise detection of the burrowing nematode, Radopholus similis, directly from diseased plant tissues. Nematology, 14(8), 977–986.CrossRefGoogle Scholar
  25. Peng, D., Xu, X., Peng, H., He, W., & Jiang, D. (2014). Rapid detection of the cereal cyst nematode (Heterodera avenae) using loop-mediated isothermal amplication. Journal of Nematology, 46(2), 217–217.Google Scholar
  26. Reise, R. W., Huettel, R. N., & Sayre, R. M. (1987). Carrot callus tissue for culture of endoparasitic nematodes. Journal of Nematology, 19(3), 387–389.PubMedPubMedCentralGoogle Scholar
  27. Seki, M., Yamashita, Y., Torigoe, H., Tsuda, H., Sato, S., & Maeno, M. (2005). Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae. Journal of Clinical Microbiology, 43(4), 1581–1586.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Starr, J. L., Cook, R., & Bridge, J. (2002) Plant resistance to parasitic nematodes. Plant Resistance to Parasitic Nematodes https://doi.org/10.1079/9780851994666.0000.
  29. Sturhan, D. I. E. T. E. R., & Brzeski, M. W. (1991). Stem and bulb nematodes, Ditylenchus spp. In Manual of agricultural nematology (pp. 423–464).Google Scholar
  30. Subbotin, S. A., Madani, M., Krall, E., Sturhan, D., & Moens, M. (2005). Molecular diagnostics, taxonomy, and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathology, 95(11), 1308–1315.CrossRefPubMedGoogle Scholar
  31. Subbotin, S. A., Ragsdale, E. J., Mullens, T., Roberts, P. A., Mundo, O. M., & Baldwin, J. G. (2008). A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2–D3 expansion segments of 28S ribosomal RNA genes and morphological characters. Molecular Phylogenetics and Evolution, 48(2), 491–505.CrossRefPubMedGoogle Scholar
  32. Thorne, G. (1945). Ditylenchus destructor n. sp. the potato rot nematode, and Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936, the teasel nematode (Nematoda: Tylenchidae). Proceedings of the Helminthological Society of Washington, 12(2), 27–34.Google Scholar
  33. Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877–882.CrossRefPubMedGoogle Scholar
  34. Vrain, T. C., Wakarchuk, D. A., Levesque, A. C., & Hamilton, R. I. (1992). Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology, 15(6), 563–573.Google Scholar
  35. Waeyenberge, L., Ryss, A., Moens, M., Pinochet, J., & Vrain, T. C. (2000). Molecular characterisation of 18 Pratylenchus species using rDNA restriction fragment length polymorphism. Nematology, 2(2), 135–142.CrossRefGoogle Scholar
  36. Wan, F., Peng, D. L., Yang, Y. W., & He, Y. Q. (2008). Species specific molecular diagnosis of Ditylenchus destructor populations occurring in China. Acta Phytopathologica Sinica, 38(3), 263–270.Google Scholar
  37. Wei, H. Y., Wang, X., Li, H. M., & Gu, J. F. (2016). Loop-mediated isothermal amplification assay for rapid diagnosis of Meloidogyne mali. Journal of Plant Protection, 43(2), 260–266.Google Scholar
  38. Wendt, K. R., Vrain, T. C., & Webster, J. M. (1993). Separation of three species of Ditylenchus and some host races of D. dipsaci by restriction fragment length polymorphism. Journal of Nematology, 25(4), 555.PubMedPubMedCentralGoogle Scholar
  39. Yang, B. (1990). Study on the causal agent of coarse bark disease of Chinese angelica. Acta Phytopathologica Sinica, 20(1), 20.Google Scholar
  40. Zhang, S. L., & Zhang, S. S. (2008). PCR and sequence analyse of rDNA-ITS1 region of Ditylenchus destructor[J]. Acta Phytopathologica Sinica, 38(2), 132–135.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Shan-Wen Ding
    • 1
  • Si-Hua Yang
    • 1
  • Wen-Jia Wu
    • 1
  • Hui Xie
    • 1
  • Chun-Ling Xu
    • 1
    Email author
  1. 1.Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of AgricultureSouth China Agricultural UniversityGuangzhouPeople’s Republic of China

Personalised recommendations