European Journal of Plant Pathology

, Volume 153, Issue 4, pp 1019–1029 | Cite as

Genetic diversity and structure of Fusarium oxysporum f.sp. lentis isolates from Iran, Syria and Algeria

  • Hamid R. PouralibabaEmail author
  • Zlatko Šatović
  • Ma José Cobos
  • Diego Rubiales
  • Sara Fondevilla


Lentil is an important cool season food legume. Vascular wilt incited by Fusarium oxysporum f.sp. lentis (FOL) is the most important disease of lentil worldwide. Knowledge of pathogen genetic structure is crucial to develop effective control strategies. In this study, the genetic structure of a collection of FOL isolates from Iran, Syria and Algeria was analysed using SSR markers. Eight markers were developed in this study and constitute a valuable resource for future molecular studies in FOL. Our results showed that there is a high molecular variation within regions, with isolates from North West Iran showing the highest gene diversity. Variation among regions also exists, with Iranian populations differing significantly from non-Iranian ones, having some private alleles. The clustering of isolates was well in agreement in both distance-based and model-based approaches suggesting the presence of seven ancestral FOL lineages, being three present exclusively in Iran while the others were distributed across all the regions. These results suggest that Iran could be a regional center of origin for FOL.


Lentil (Lens culinarisFusarium oxysporum f.sp. lentis Population structure Pathotype SSR 



This research was carried out based on PhD educational mission No. 3972/200-28/1/1389 of first author from Agricultural Research, Education and Extension Organization (AREEO) of Iran and financially supported by Project AGL2014-52871-R co-financed by FEDER. The authors wish to tanks Professor B. Bayaa, University of Aleppo, Syria, for helping to obtain Algerian isolates of FOL.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. All authors have revised the manuscript and approved its submission.

Research involving human participants and / or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Al-Husien, N. H., Hamwieh, A., Ahmed, S., & Bayaa, B. (2017). Genetic diversity of Fusarium oxysporum f.sp. lentis population affecting lentil in Syria. Journal of Phytopathology, 165, 306–312.CrossRefGoogle Scholar
  2. Baayen, R. P., O'Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., Roebroeck, E. J. A., & Waalwijk, C. (2000). Gene genealogies and AFLP analysis in the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot diseases. Phytopathology, 90, 891–900.CrossRefPubMedGoogle Scholar
  3. Bao, J. R., Fravel, D. R., O'Neill, N. R., Lazarovits, G., & van Berkum, P. (2002). Genetic analysis of pathogenic and non-pathogenic Fusarium oxysporum from tomato plants. Canadian Journal of Botany, 80, 271–279.CrossRefGoogle Scholar
  4. Bayaa, B., Erskine, W., & Hamdi, A. (1995). Evaluation of a wild lentil collection for resistance to vascular wilt. Genetic Resources and Crop Evolution, 42, 231–235.CrossRefGoogle Scholar
  5. Bayaa, B., Kumari, S. G., Akkaya, A., & Erskine, W. (1998). Survey of major biotic stresses of lentil in south-east Antalia, Turkey. Phytopathologia Mediterranea, 37, 88–95.Google Scholar
  6. Baysal, Ö., Siragusa, M., Ikten, H., Polat, E., Gümrükcü, E., Yigit, F., Carimi, F., & Teixeria da Silva, J. A. (2009). Fusarium oxysporum f. sp. lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Patholgy, 74, 68–75.CrossRefGoogle Scholar
  7. Belabid, L., & Fortas, Z. (2002). Virulence and vegetative compatibility of Algerian isolates of Fusarium oxysporum f. sp. lentis. Phytopathologia Mediterranea, 41, 179–187.Google Scholar
  8. Belabid, L., Baum, M., Fortas, Z., Bouznad, Z., & Eujayl, I. (2004). Pathogenic and genetic characterization of Algerian isolates of Fusarium oxysporum f. sp. lentis by RAPD and AFLP analysis. African Journal of Biotechnology, 3(1), 25–31.CrossRefGoogle Scholar
  9. Bentley, S., Pegg, K. G., & Dale, J. L. (1994). Optimization of RAPD-fingerprinting to analyze genetic variation within populations of Fusarium oxysporum f. sp. cubense. Journal of Phytopathology, 142, 64–78.CrossRefGoogle Scholar
  10. Bogale, M., Wingfield, B. D., Wingfield, M. J., & Steenkamp, T. (2005). Simple sequence repeat for species in Fusarium oxysporum complex. Molecular Ecology Notes, 5, 622–624.CrossRefGoogle Scholar
  11. Bogale, M., Wingfield, B. D., Wingfield, M. J., & Steenkamp, E. T. (2006). Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Diversity, 51–66.Google Scholar
  12. Bowcock, A. M., Ruizlinares, A., Tomfohrde, J., et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368, 455–457.Google Scholar
  13. Chen, W., Basandrai, A. K., Basandrai, D., Banniza, S., Bayaa, B., Buchwaldt, L., Davidson, J., Larsen, R., Rubiales, D., & Taylor, P. (2009). Lentil diseases and their management. In W. Erskine et al. (Eds.), The lentil: Botany, production and uses (pp. 262–281). UK: CABI.CrossRefGoogle Scholar
  14. Datta, S., Choudhary, R. G., Shamim, M., Singh, R. K., & Dhar, V. (2011). Molecular diversity in Indian isolates of Fusarium oxysporum f.sp. lentis inciting wilt disease in lentil (Lens culinaris Medik). African Journal of Biotechnology, 10(38), 7314–7323.Google Scholar
  15. Earl Dent, A., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.CrossRefGoogle Scholar
  16. Erskine, W., & Bayaa, B. (1996). Yield loss, incidence and inoculum density associated with vascular wilt of lentil. Phytopathologia Mediterranea, 36, 24–32.Google Scholar
  17. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620.CrossRefPubMedGoogle Scholar
  18. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitocondreal DNA restriction sites. Genetics, 131, 479–491.PubMedPubMedCentralGoogle Scholar
  19. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  20. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. Scholar
  21. Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package) Version 3.6. Department of Genomic Sciences, University of Washington, Seattle, WA.Google Scholar
  22. Grajal-Martin, M. J., Simon, C. J., & Muehlbauer, F. J. (1993). Use of random amplified polymorphic DNA (RAPD) to characterize race 2 of Fusarium oxysporum f. sp. pisi. Phytopathology, 83, 612–614.CrossRefGoogle Scholar
  23. Kalinowski, S. T. (2004). Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conservation Genetics, 5, 539–543.CrossRefGoogle Scholar
  24. Kalinowski, S. T. (2005). HP-rare: A computer program for performing rarefaction on measures of allelic diversity. Molecular Ecology Notes, 5, 187–189.CrossRefGoogle Scholar
  25. Khare, M. N. (1981). Diseases of lentil. In C. Webb & G. Hawtin (Eds.), Lentil (pp. 163–172). UK: CABI.Google Scholar
  26. Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15, 1179–1191.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kraft, J. M., Haware, M. P., Halila, H., & Bayaa, B. (2000). Soilborne diseases and their control. In R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in 21 st Century (pp. 457–466). The Netherlands: Kluwer Academic.CrossRefGoogle Scholar
  28. Lassner, M. W., Peterson, P., Yoder, J. I. (1989). Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Molecular Biology Reporter 7(2):116–128.Google Scholar
  29. Lievens, B., Houterman, P.M. and Rep, M. (2009). Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters, 300, 201–215.Google Scholar
  30. Ma, L. J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W. B., Woloshuk, C., Xie, X., Xu, J. R., Antoniw, J., Baker, S. E., Bluhm, B. H., Breakspear, A., Brown, D. W., Butchko, R. A. E., Chapman, S., Coulson, R., Coutinho, P. M., Danchin, E. G. J., Diener, A., Gale, L. R., Gardiner, D. M., Goff, S., Hammond-Kosack, K. E., Hilburn, K., Hua-van, A., Jonkers, W., Kazan, K., Kodira, C. D., Koehrsen, M., Kumar, L., Lee, Y. H., Li, L., Manners, J. M., Miranda-Saavedra, D., Mukherjee, M., Park, G., Park, J., Park, S. Y., Proctor, R. H., Regev, A., Ruiz-Roldan, M. C., Sain, D., Sakthikumar, S., Sykes, S., Schwartz, D. C., Turgeon, B. G., Wapinski, I., Yoder, O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C. A., Kistler, H. C., & Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367–373.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Manulis, S., Kogan, N., Reuven, M., & Ben-Yephet, Y. (1994). Use of the RAPD technique for identification of Fusarium oxysporum f. sp. dianthi from carnation. Phytopathology, 84, 98–101.CrossRefGoogle Scholar
  32. McDonald, B. A., & Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163–180.CrossRefGoogle Scholar
  33. Minch, E., Ruiz-Linares, A., Goldstein, D. B., Feldmann, M. W., CavalliSforza, L. L. (1997). Microsat (version 1.5d): A program for calculating statistics on microsatellite allele data. microsat/microsat.html.
  34. Mohammadi, N., Goltapeh, E. M., Babaie-Ahari, A., & Pouralibaba, H. (2011). Pathogenic and genetic characterization of Iranian isolates of Fusarium oxysporum f.sp. lentis by ISSR analysis. Journal of Agricultural Technology, 7(1), 63–72.Google Scholar
  35. Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification. USA: The Pennsylvania State University Press.Google Scholar
  36. Nourollahi, K., & Madahjalali, M. (2017). Analysis of population genetic structure of Iranian Fusarium oxysporum f. sp. lentis isolates using microsatellite markers. Australasian Plant Pathology, 46, 35–42.CrossRefGoogle Scholar
  37. O’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematic and14 phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.CrossRefGoogle Scholar
  38. Pouralibaba, H. R., Rubiales, D., & Fondevilla, S. (2016). Identification of pathotypes in Fusarium oxysporum f.sp. lentis. European Journal of Plant Pathology, 144, 539–549.CrossRefGoogle Scholar
  39. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.PubMedPubMedCentralGoogle Scholar
  40. Rousset, F. (2008). GENEPOP'007: A complete reimplementation of the GENEPOP software for windows and Linux. Molecular Ecology Resources, 8, 103–106.CrossRefPubMedGoogle Scholar
  41. Saghai Maroof, M. A., Zhang, Q., & Biyashev, R. (1995). Comparison of restriction fragment length polymorphisms in wild and cultivated barley. Genome, 38, 298–306.CrossRefGoogle Scholar
  42. SAS Institute (2004). SAS/STAT® 9.1 User’s Guide. SAS Institute Inc., Cary, NC.Google Scholar
  43. Taheri, N., Rastegar Fallahati, R., Jafarpour, B., Bagheri, A. R., & Jahanbakhsh, V. (2010). Pathogenic and genetic characterization of Fusarium oxysporum f.sp. lentis by RAPD and IGS analysis in Khorasan province. World Applied Sciences Journal, 9(3), 239–244.Google Scholar
  44. Torres, A. M., Weeden, N. F., & Martín, A. (1993). Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theoretical and Applied Genetics, 85, 937–945.CrossRefPubMedGoogle Scholar
  45. Vogelgsang, S., Enkerli, J., Jenny, E., Roffler, S., & Widmer, F. (2011). Characterization of Fusarium poae microsatellite markers on strains from Switzerland and other countries. Journal of Phytopathology, 159, 197–200.CrossRefGoogle Scholar
  46. You, F. M., Huo, N. X., Gu, Y. Q., Luo, M. C., Ma, Y. Q., Hane, D., Lazo, G. R., Dvorak, J., & Anderson, O. D. (2008). BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinfomatics, 9, 253.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Hamid R. Pouralibaba
    • 1
    • 2
    Email author
  • Zlatko Šatović
    • 3
    • 4
  • Ma José Cobos
    • 1
  • Diego Rubiales
    • 1
  • Sara Fondevilla
    • 1
  1. 1.Institute for Sustainable Agriculture, CSICCórdobaSpain
  2. 2.Dryland Agricultural Research InstituteAgricultural Research, Education and Extension Organization (AREEO)MaraghehIran
  3. 3.Faculty of Agriculture, Department of Seed Science and TechnologyUniversity of ZagrebZagrebCroatia
  4. 4.Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv)ZagrebCroatia

Personalised recommendations