European Journal of Plant Pathology

, Volume 153, Issue 3, pp 947–955 | Cite as

Diversity and geographic distribution of fungal strains infecting field-grown common bean (Phaseolus vulgaris L.) in Tunisia

  • Yosra Sendi
  • Samir Ben Romdhane
  • Ridha Mhamdi
  • Moncef MrabetEmail author


A collection of 103 fungal strains was established from infected common bean plants (Phaseolus vulgaris L.) field-grown in three geographic regions from Tunisia and known for their long history in bean culture; Boucharray, Chatt-Mariem, and Metline. The fungal strain collection was established from common bean root and aerial parts. The pathogenicity test carried out on germinated seedlings showed that among the fungal collection, 41% of fungal strains were assigned to be highly pathogenic. In fact, serious cases of seedling damping-off, as well as a significant reduction in root and shoot biomass in cv. Coco blanc were noticed (up to 90% biomass reduction) considering fungal strains from the three prospected localities. The identification of fungal isolates belonging to this high pathogenicity class, based on the internal transcribed spacer region (ITS), showed a wide generic and specific diversity among common bean pathogenic fungi in Tunisia. Fusarium spp. strains were dominant and represented 67% of the characterized fungal collection. Fungal genera including Alternaria (22%), Rhizoctonia (4%), Ascomycota (4%), Macrophomina (10%) and Phoma (4%) were also reported. The highest richness levels were found in the Chatt-Mariem and Boucharray regions, showing the highest generic and interspecific diversity. In this work, we revealed also a variability in the abundance and geographic distribution of fungal species between the three prospected regions. Fungal strains infecting common bean in Metline were represented exclusively by Fusarium oxysporum. However, the genus Fusarium represented about 66% of fungal strains recovered from Boucharray, and only 20% from Chatt-Mariem. The genus Alternaria represented 11% and 40% of total fungal isolates in Boucharray and Chatt-Mariem, respectively, and was isolated only from the foliar parts of diseased common bean plants. The present work represents an important database that should be considered for surveying common bean fungal diseases.


Common bean Fungi Pathogenicity Internal transcribed spacer Diversity 



This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia under Grant 2015-2018 “Improvement of Legume Production”for the Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria.


  1. Alderman, S. C., Coats, D. D., & Crowe, F. J. (1996). Impact of ergot on Kentucky blue grass grown for seed in northeastern Oregon. Plant Disease, 80, 853–855.CrossRefGoogle Scholar
  2. Al-Hamdany, M. A., & Salih M. M. (1986). Wilt causing fungi on broad bean. Indian Phytopathology, 39, 620–622.Google Scholar
  3. Andrews, M., James, E. K., Sprent, J. I., Boddey, R. M., Gross, E., & dos Reis Jr., F. B. (2011). Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: Values obtained using 15N natural abundance. Plant Ecology and Diversity, 4, 131–140.CrossRefGoogle Scholar
  4. Anne, B., Jeff, J. D., Patrick, H., Colin, H., Greg, K., Gwilym, L., Barbara, M., et al. (2013). Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Legume Phylogeny and Classification, 62, 217–248.Google Scholar
  5. Balmas, V., Corda, P., Marcello, A., & Bottalico, A. (2000). Fusarium nygamai associated with fusarium root rot of Rice in Sardinia. Plant Disease, 84, 807–807.CrossRefGoogle Scholar
  6. Beadle, J., Wright, M., McNeely L., & Benne, J. W. (2003). Electrophoretic karyotype analysis of fungi. Advance in Applied Microbiology, 13, 243–264.CrossRefGoogle Scholar
  7. Bécard, G., & Fortin, J. A. (1988). Early events of vascular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist, 108, 211–218.CrossRefGoogle Scholar
  8. Benhamou, N., Rey, P., Chérif, M., Hockenhull, J., & Tirilly, Y. (1997). Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxsporum f. sp. radicis-lycopersici. Phytopathology 87, 108–122.CrossRefGoogle Scholar
  9. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60, 2–14.CrossRefGoogle Scholar
  10. Clare, M. M., Melis, R., Derera, J., Laing, M., & Buruchara, R. A. (2010). Identification of source of resistance to fusarium root rot among selected common bean lines in Uganda. Journal of Animal and Plant Sciences, 7(3), 876–891.Google Scholar
  11. Cruz, C. D., Moreira, M. A., & Barros, E. G. D. (2007). Simulation of population size and genome saturation level for genetic mapping of recombinant inbred lines (RILs). Genetics and Molecular Biology, 30, 1101–1108.CrossRefGoogle Scholar
  12. De Vega-Bartol, J. J., Martín-Dominguez, R., Ramos, B., García-Sánchez, M. A., & DíazMínguez, J. M. (2011). New virulence groups in Fusarium oxysporum f. sp. phaseoli: The expression of the gene coding for the transcription factor ftf1 correlates with virulence. Phytopathology, 101, 470–479.CrossRefGoogle Scholar
  13. El-Mohamedy, R. S. R., & Abdalla, M. (2013). Bio-priming seed treatment for biological control of soil borne fungi causing root rot of green bean (Phaseolus vulgaris L.). Journal of Agricultural and Thechnologie, 9, 589–599.Google Scholar
  14. Estévez de Jensen, C., Porch, T., Beaver, J., Chicapa, D. A., & Baptista, L. (2011). Disease incidence in Phaseolus vulgaris in the regions of Chianga, Cuanza Sul and Malange, Angola. Phytopathology, 101, 277.Google Scholar
  15. Gupta, P., Chakraborty, D., & Mittal, R. K. (2015). Antifungal activity of medicinal plants leaf extracts on growth of Macrophomina phaseolina. Agricultural Science Digest-A Research Journal, 35, 211–214.CrossRefGoogle Scholar
  16. Gutierrez, P., Alzate, J., Yepes, M. S., & Marin, M. (2014). Complete mitochondrial genome sequence of the common bean anthracnose pathogen Colletotrichum lindemuthianum. Mitochondrial DNA, 27, 136–137.CrossRefGoogle Scholar
  17. Hubballi, M., Nakkeeran, S., Raguchander, T., Anand, T., & Samiyappan, R. (2010). Effect of environmental conditions on growth of Alternaria alternata causing leaf blight of noni. World Journal of Agricultural Sciences, 6, 171–177.Google Scholar
  18. Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., et al. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 113–121.CrossRefGoogle Scholar
  19. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.CrossRefGoogle Scholar
  20. Montiel, G. L., Gonzále, F. F., Sánchez, G. B. M., Guzmán, R. S., Gámez, V. F. P., Acosta, G. J. A., et al. (2005). Especies de Fusarium Presentes en Raíces de Frijol (Phaseolus vulgaris L.) con Daños de Pudrición, en CincoEstadosdel Centro de México. Revista Mexicana de Fitopatología, 23, 1–7.Google Scholar
  21. Mouden, N., Ben Kiran, R., Ouzani, A., & Douira, A. (2013). Mycoflore de quelques variétés du fraisier (Fragaria ananassa L.), cultivées dans la région du Gharb et le Loukkos (Maroc). Journal of Applied Biosciences, 61, 4490–4514.CrossRefGoogle Scholar
  22. Narayanasamy, P. (2011). Detection of fungal pathogens in plants. Microbial plant pathogens-detection and disease diagnosis: Fungal pathogens, 1,
  23. Naseri, B., & Mousavi, S. S. (2015). Root rot pathogens in field soil, roots and seeds in relation to common bean (Phaseolus vulgaris), disease and seed production. International Journal of Pest Management, 61, 60–67.CrossRefGoogle Scholar
  24. Nora, A.F., Syama, C., Lana, M.R., Turkington, T. K., Sheryl, A.T., & Tom, G. (2014). Fusarium diseases of canadian grain crops: impact and disease management strategies
  25. Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolite produces by Streptomyceshygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4, 330–337.CrossRefGoogle Scholar
  26. Rainey, K. M., & Griffiths, P. D. (2005). Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.). Journal of the American Society for Horticultural Science, 130, 700–706.CrossRefGoogle Scholar
  27. Sarikamis, G., Yasar, F., Bakir, M., Kazan, K., & Ergül, A. (2009). Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey. Genetic Molecular Research, 8, 880–887.CrossRefGoogle Scholar
  28. Seitz, L. M., Sauer, D. B., Mohr, H. E., & Aldis, D. F. (1982). Fungal growth and dry matter loss duringbin storage of high-moisture corn. Cereal Chemistry, 59, 9–14.Google Scholar
  29. Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes a boon to human nutrition. Trends in Food Science and Technology, 14, 507–518.CrossRefGoogle Scholar
  30. Vanegas, K., Gutiérrez, P., & Marín, M. (2014). Identificación molecular de hongosaislados de tejidos de fríjol con síntomasdeantracnosis. Actabiológica Colombiana, 19, 143–154.CrossRefGoogle Scholar
  31. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic Press, Part three. Genetics and Evolution, 18, 315–322.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Yosra Sendi
    • 1
    • 2
  • Samir Ben Romdhane
    • 2
  • Ridha Mhamdi
    • 2
  • Moncef Mrabet
    • 2
    Email author
  1. 1.Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria (CBBC)Hammam-LifTunisia

Personalised recommendations