Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 891–906 | Cite as

Transcriptome profiling of periwinkle infected with Huanglongbing (‘Candidatus Liberibacter asiaticus’)

  • Xiaofei Liu
  • Yu Zheng
  • Gefu Wang-Pruski
  • Yun Gan
  • Bo Zhang
  • Qiyong Hu
  • Yixin Du
  • Jianwei Zhao
  • Lihua LiuEmail author
Article
  • 105 Downloads

Abstract

Citrus Huanglongbing (HLB) is the most devastating disease of citrus worldwide. It is caused by a phloem-limited α-proteobacterium ‘Candidatus Liberibacter’, whose pathogenesis is unknown. Periwinkle (Catharanthus roseus), known to carry more HLB bacterium and develop HLB symptom in a short period of time, is an ideal host plant for studying the HLB bacterium. In this study, periwinkle was used as the host for HLB bacterium, and the next-generation sequencing technology RNA-Seq was used to evaluate the gene expression of the pairwise comparison for three categories of periwinkle leaf samples, including: healthy leaves (H), yellow leaves (Y), and symptom-just-occurred partially mottled leaves (S). The analysis identified 5432 differentially expressed genes (DEGs), associated with a wide range of functions and pathways involved in cell wall, transport, transcription factors, secondary metabolism, stress, signaling, plant hormone metabolism and signal transduction pathway, starch and sucrose metabolism pathway and photosystem and photosynthesis related pathways. The number of DEGs in the pairwise comparisons between Y and H is much more than that of between S and H. A total of 17 genes were further assayed by real-time qRT-PCR and the results were generally consistent with what obtained from RNA-Seq, with the correlation coefficients all greater than 0.92. The expressions of some genes regulated by the infection of HLB bacterium in periwinkles were consistent with previous studies on citrus. Genes involved in functions such as starch metabolism and hormone mediated defense are considered as useful guidance for HLB pathogenesis in future.

Keywords

Huanglongbing ‘Ca. Liberibacter asiaticus’ Periwinkle Transcriptome Host-pathogen interaction 

Notes

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (grant no. 31272009), Program of Fujian Provincial Science and Technology Department (2017R1025-4), Innovation Team of Plant Protection, Fujian Academy of Agricultural Sciences (STIT2017-1-8) and Program of Fujian Academy of Agricultural Sciences (YC2017-11). We appreciate the expertise of Dianlong Chen, Caiyun Deng, Yanyun Shi, Chunhua Xu for the technical support.

Funding

This study was funded by the National Natural Science Foundation of China (grant no. 31272009), Program of Fujian Provincial Science and Technology Department (2017R1025–4) and Innovation Team of Plant Protection, Fujian Academy of Agricultural Sciences (STIT2017-1-8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10658_2018_1607_MOESM1_ESM.xlsx (11.9 mb)
ESM 1 (XLSX 12159 kb)

References

  1. Achor, D. S., Exteberria, E., Wang, N., Folimonova, S. Y., Chung, K. R., & Albrigo, L. G. (2010). Sequence of anatomical symptom observations in citrus affected with huanglongbing diseas. Plant Pathology Journal, 9, 56–64.Google Scholar
  2. Albrecht, U., & Bowman, K. D. (2008). Gene expression in Citrus sinensis, (L.) Osbeck following infection with the bacterial pathogen Candidatus, Liberibacter asiaticus causing huanglongbing in Florida. Plant Science, 175(3), 291–306.Google Scholar
  3. Albrecht, U., & Bowman, K. D. (2012). Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Science, s185–186(4), 118–130.Google Scholar
  4. Aritua, V., Achor, D., Gmitter, F. G., Albrigo, G., & Wang, N. (2013). Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One, 8(9), e73742.Google Scholar
  5. Baldwin, E., Plotto, A., Manthey, J., Mccollum, G., Bai, J., Irey, M., et al. (2012). Effect of liberibacter infection (huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: Chemical and physical analyses. Journal of Agricultural & Food Chemistry, 58(2), 1247–1262.Google Scholar
  6. Ball, S., Guan, H. P., James, M., Myers, A., Keeling, P., Mouille, G., Buléon, A., Colonna, P., & Preiss, J. (1996). From glycogen to amylopectin: A model for the biogenesis of the plant starch granule. Cell, 86(3), 349–352.Google Scholar
  7. Bové, J. M. (2006). Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88(1), 7–37.Google Scholar
  8. Bové, J. M., & Ayres, A. (2007). Etiology of three recent diseases of citrus in Sao Paulo state: Sudden death, variegated chlorosis and huanglongbing. IUBMB Life, 59(4–5), 346–354.Google Scholar
  9. Bradshaw Jr., H. D., Hollick, J. B., Parsons, T. J., Clarke, H. R., & Gordon, M. P. (1990). Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Molecular Biology, 14(1), 51–59.Google Scholar
  10. Chan, S. N., Bakar, N. A., Mahmood, M., Ho, C. L., Dzaki, N. M., & Shaharuddin, N. A. (2017). Identification and expression profiling of a novel Kunitz trypsin inhibitor (KTI) gene from turmeric, Curcuma longa, by real-time quantitative PCR (RT-qPCR). Acta Physiologiae Plantarum, 39, 12.Google Scholar
  11. Chen, Z., Agnew, J. L., Cohen, J. D., He, P., Shan, L., Sheen, J., et al. (2007). Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20131–20136.Google Scholar
  12. Choi, J., Huh, S. U., Kojima, M., Sakakibara, H., Paek, K. H., & Hwang, I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell, 19(2), 284–295.Google Scholar
  13. Curvers, K., Seifi, H., Mouille, G., De Rycke, R., Asselbergh, B., Van Hecke, A., et al. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to botrytis cinerea. Plant Physiology, 154(2), 847–860.Google Scholar
  14. Dannenhoffer, J. M., Schulz, A., Skaggs, M. I., Bostwick, D. E., & Thompson, G. A. (1997). Expression of the phloem lectin is developmentally linked to vascular differentiation in curcurbits. Planta, 201, 405–414.Google Scholar
  15. De Vleesschauwer, D., & Höfte, M. (2010). Abscisic acid-induced resistance against the brown spot pathogen cochliobolus miyabeanus in rice involves map kinase-mediated repression of ethylene signaling. Plant Physiology, 152(4), 2036–2052.Google Scholar
  16. De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., et al. (2012). Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiology, 158(4), 1833–1846.Google Scholar
  17. Delker, C., Stenzel, I., Hause, B., Miersch, O., Feussner, I., & Wasternack, C. (2006). Jasmonate biosynthesis in Arabidopsis thaliana-enzymes, products and regulation. Plant Biology, 8(3), 297–306.Google Scholar
  18. Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., et al. (2008). Activation of the indole-3-acetic acid: Amido synthetase gh3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell, 20, 228–240.Google Scholar
  19. Downes, B. P., Steinbaker, C. R., & Crowell, D. N. (2001). Expression and processing of a hormonally regulated β-Expansin from soybean. Plant Physiology, 126, 244–252.Google Scholar
  20. Erickson, H. S., Albert, P. S., Gillespie, J. W., Rodriguez-Canales, J., Marston Linehan, W., Pinto, P. A., et al. (2009). Quantitative RT-PCR gene expression analysis of laser. Nature Protocols, 4, 902–922.Google Scholar
  21. Etxeberria, E., Gonzalez, P., Achor, D., & Albrigo, G. (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological & Molecular Plant Pathology, 74(1), 76–83.Google Scholar
  22. Fan, J., Chen, C., Brlansky, R. H., Gmitter, J. F., & Li, Z. G. (2010). Changes in carbohydrate metabolism in Citrus sinensis infected with 'Candidatus Liberibacter asiaticus. Plant Pathology, 59, 1037–1043.Google Scholar
  23. Fan, J., Chen, C., Yu, Q., Brlansky, R. H., Li, Z. G., & Gmitter, F. G. (2011). Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by 'Candidatus Liberibacter asiaticus. Physiologia Plantarum, 143(3), 235–245.Google Scholar
  24. Folimonova, S. Y., & Achor, D. S. (2010). Early events of citrus greening (huanglongbing) disease development at the ultrastructural level. Phytopathology, 100(9), 949–958.Google Scholar
  25. Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., et al. (2011). Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiology, 155(1), 589–602.Google Scholar
  26. Fu, S., Shao, J., Zhou, C., & Hartung, J. S. (2016). Transcriptome analysis of sweet orange tress infected with 'Candidatus Liberibacter asiaticus' and two strains of Citrus Tristeza virus. BMC Genomics, 17, 349.Google Scholar
  27. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., et al. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436.Google Scholar
  28. Garnier, M., & Bové, J. M. (1983). Transmission of the organism associated with citrus greening disease from sweet orange to periwinkle by dodder. Phytopathology, 73, 1358–1363.Google Scholar
  29. Gomi, K., Yamamoto, H., & Akimitsu, K. (2002). Characterization of a lipoxygenase gene in rough lemon induced by Alternaria alternata. Journal of General Plant Pathology, 68(1), 21–30.Google Scholar
  30. Grabherr, M. G., Haas, B., Yassour, M., Levin, J., Thompson, D., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29(7), 644–652.Google Scholar
  31. Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7220–7224.Google Scholar
  32. Grunewald, W., Karimi, M., Wieczorek, K., Van de Cappelle, E., Wischnitzki, E., Grundler, F., et al. (2008). A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology, 148(1), 358–368.Google Scholar
  33. Iglesias, V. A., & Meins, F. (2000). Movement of plant viruses is delayed in a β-1, 3- glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant Journal for Cell & Molecular Biology, 21(2), 157–166.Google Scholar
  34. Jagoueix, S., Bové, J. M., & Garnier, M. (1994). The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. International Journal of Systematic Bacteriology, 44, 397–386.Google Scholar
  35. Jagoueix, S., Bové, J. M., & Garnier, M. (1996). PCR detection of the two 'Candidatus' Liberobacter species associated with greening disease of citrus. Molecular and Cellular Probes, 10(1), 43–50.Google Scholar
  36. Jameson, P. E., Zhang, H., & Lewis, D. (2017). Cytokinins. Encyclopedia of Applied Plant Sciences, 114(8), 391–402.Google Scholar
  37. Journot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 18, 3289–3302.Google Scholar
  38. Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A., et al. (1998). Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate/phosphate antiporter. Plant Cell, 10(1), 10.Google Scholar
  39. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(Database issue), D480–D484.Google Scholar
  40. Kant, S., Bi, Y.-M., Zhu, T., & Rothstein, S. J. (2009). Saur39, a small auxin-up rna gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology, 151(2), 691–701.Google Scholar
  41. Kellner, F., Kim, J., Clavijo, B. J., Hamilton, J. P., Childs, K. L., Vaillancourt, B., et al. (2015). Genome-guided investigation of plant natural product biosynthesis. Plant Journal for Cell & Molecular Biology, 82, 680–692.Google Scholar
  42. Killiny, N., Valim, M. F., Jones, S. E., Omar, A. A., Hijaz, F., Gmitter, F. G., et al. (2017). Metabolically speaking: Possible reasons behind the tolerance of 'Sugar Belle' mandarin hybrid to huanglongbing. Plant Physiology and Biochemistry, 116, 36–47.Google Scholar
  43. Kim, J. S., Sagaram, U. S., Burns, J. K., Li, J. L., & Wang, N. (2009). Response of sweet orange (citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: Microscopy and microarray analyses. Phytopathology, 99(1), 50–57.Google Scholar
  44. Kusajima, M., Yasuda, M., Kawashima, A., Nojiri, H., Yamane, H., Nakajima, M., et al. (2010). Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. Journal of General Plant Pathology, 76(2), 161–167.Google Scholar
  45. Lasat, M. M., Pence, N. S., Garvin, D. F., Ebbs, S. D., & Kochian, L. V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 51(342), 71–79.Google Scholar
  46. Lee, J. R., Boltz, K. A., & Lee, S. Y. (2014). Molecular chaperone function of arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin. Biochemical & Biophysical Research Communications, 443(1), 18–21.Google Scholar
  47. Liao, H.-L., & Burns, J. K. (2012). Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: Comparison with girdled fruit. Journal of Experimental Botany, 63(8), 3307–3319.Google Scholar
  48. Llorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., et al. (2008). Repression of the auxin response pathway increases arabidopsis susceptibility to necrotrophic fungi. Molecular Plant, 1(3), 496–509.Google Scholar
  49. Mafra, V., Martins, P. K., Francisco, C. S., Ribeiro-Alves, M., Freitas-Astúa, J., & Machado, M. A. (2013). Candidatus Liberibacter americanus' induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genomics, 14(1), 247.Google Scholar
  50. Martinelli, F., Uratsu, S., Albrecht, U., Reagan, R. L., Phu, M. L., Britton, M., et al. (2012). Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS One, 7(5), e38039.Google Scholar
  51. Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology, 8(4), 409–414.Google Scholar
  52. Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of nbs-lrr-encoding genes in arabidopsis. Plant Cell, 15(4), 809–834.Google Scholar
  53. Mukhtar, S. M., Deslandes, L., Auriac, M. C., Marco, Y., & Somssich, I. E. (2008). The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. The Plant Journal, 56(6), 935–947.Google Scholar
  54. Musetti, R., Paolacci, A., Ciaffi, M., Tanzarella, O. A., Polizzotto, R., Tubaro, F., et al. (2010). Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology, 100(4), 390–399.Google Scholar
  55. Nehela, Y., Hijaz, F., Elzaawely, A. A., El-Zahaby, H. M., & Killiny, N. (2018). Citrus phytohormonal response to Candidatus Liberibacter asiaticus and its vector Diaphorina citri. Physiological and Molecular Plant Pathology, 102, 24–35.Google Scholar
  56. Ohta, M., Ohme-Takagi, M., & Shinshi, H. (2000). Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. The Plant Journal, 22(1), 29–38.Google Scholar
  57. Owens, R., Blackburn, M., & Ding, B. (2001). Possible involvement of the phloem lectin in long-distance viroid movement. Molecular Plant-Microbe Interactions, 14(7), 905–909.Google Scholar
  58. Pandey, S. P., & Somssich, I. E. (2009). The role of wrky transcription factors in plant immunity. Plant Physiology, 150(4), 1648–1655.Google Scholar
  59. Peng, M. S., Baga, M. H., Chibbar, R. N., & Gao, M. (2000). Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiology, 124(1), 265.Google Scholar
  60. Pirone, C. L., Alexander, L. C., & Lamp, W. O. (2005). Patterns of starch accumulation in alfalfa subsequent to potato leafhopper (Homoptera: Cicadellidae) injury. Environmental Entomology, 34(1), 199–204.Google Scholar
  61. Planet, P., Jagoueix, S., Bové, J. M., & Garnier, M. (1995). Detection and characterization of the African citrus greening liberobacter by amplification, cloning and sequencing of the rplKAJL-rpoBC operon. Current Microbiology, 30(3), 137–141.Google Scholar
  62. Pustika, A. B., Subandiyah, S., Holford, P., Beattie, G. A. C., Iwanami, T., & Masaoka, Y. (2008). Interactions between plant nutrition and symptom expression in mandarin trees infected with the disease huanglongbing. Australasian Plant Disease Notes, 3(1), 112–115.Google Scholar
  63. Read, S., & Northcote, D. (1983). Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta, 158(2), 119–127.Google Scholar
  64. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317.Google Scholar
  65. Sagaram, U. S., DeAngelis, K. M., Trivedi, P., Andersen, G. L., Lu, S. E., & Wang, N. (2009). Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Applied and Environmental Microbiology, 75(6), 1566–1577.Google Scholar
  66. Saponari, M., De Bac, G., Breithaupt, J., Loconsole, G., Yokomi, R. K., & Catalano, L. (2010). First report of 'Candidatus Liberibacter asiaticus' associated with huanglongbing in sweet orange in Ethiopia. Plant Disease, 94, 482.Google Scholar
  67. Schneider, H. (1968). Anatomy of greening-diseased sweet orange shoots. Phytopathology, 58, 262–266.Google Scholar
  68. Synková, H., Semorádová, Š., & Burketová, L. (2004). High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plant Cell, Tissue and Organ Culture, 79(2), 169–179.Google Scholar
  69. Teixeira, D. C., Ayres, A. J., Kitajima, E. W., Tanaka, F. A., Danet, J. L., Jagoueix-Eveillard, S., et al. (2005). First report of a huanglongbing-like disease of citrus in Sao Paulo state, Brazil, and association of a new Liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Disease, 89(1), 107.Google Scholar
  70. Teixeira, D. C., Eveillard, S., Sirand-Pugnet, P., Wulff, A., Saillard, C., Ayres, A. J., et al. (2008). The tufB-secE-nusG-rplKAJL-rpoB gene cluster of the liberibacters: Sequence comparisons, phylogeny and speciation. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 6), 1414–1421.Google Scholar
  71. Tian, S., Lu, L., Labavitch, J. M., Webb, S. M., Yang, X., Brown, P. H., et al. (2014). Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation. Journal of Experimental Botany, 65(4), 953–964.Google Scholar
  72. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515.Google Scholar
  73. Trivedi, P., Duan, Y. P., & Wang, N. (2010). Huanglongbing a systemic disease, restructures the bacterial community associated with citrus roots. Applied and Environmental Microbiology, 76(11), 3427–3436.Google Scholar
  74. Vandesompele, J., Preter, K. D., Pattyn, F., Poppe, B., Roy, N. V., Paepe, A. D., et al. (2002). Accurate normalization of real-time quantitative rt-pcr data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), research0034.1–research0034.11.Google Scholar
  75. Vidhyasekaran, P. (2015). Plant hormone signaling Systems in Plant Innate Immunity. Dordrecht: Springer.Google Scholar
  76. Villechanoux, S., Garnier, M., Renaudin, J., & Bové, J. M. (1992). Detection of several strains of the bacterium-like organism of citrus greening disease by DNA probes. Current Microbiology, 24(2), 89–95.Google Scholar
  77. Wang, N., & Trivedi, P. (2013). Citrus huanglongbing: A newly relevant disease presents unprecedented challenges. Phytopathology, 103(7), 652–665.Google Scholar
  78. Wang, D., Pajerowska-Mukhtar, K., Culler, A., & Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology, 17(20), 1784–1790.Google Scholar
  79. Wang, Z.-W., Bei, X.-J., Zhu, S.-P., Ma, Y.-Y., & Yang, R.-T. (2011). Recent advances in Phytohormone regulated plant resistance to pathogens. Journal of Anhui Agricultural Sciences, 39(15), 9035–9038,9041.Google Scholar
  80. Wang, Y., Zhou, L., Yu, X., Stover, E., Luo, F., & Duan, Y. (2016). Transcriptome profiling of huanglongbing (HLB) tolerant and susceptible Citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 7(74), 933.Google Scholar
  81. Weber, A. P. (2004). Solute transporters as connecting elements between cytosol and plastid stroma. Current Opinion in Plant Biology, 7(3), 247–253.Google Scholar
  82. Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany, 95(5), 707–735.Google Scholar
  83. Xu, X., Chen, C., Fan, B., & Chen, Z. (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 18(5), 1310–1326.Google Scholar
  84. Yang, P., Chen, C., Wang, Z., Fan, B., & Chen, Z. A. (1999). Pathogen-and salicylic acidinduced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant Journal, 18(2), 141–149.Google Scholar
  85. Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis for rna-seq: Accounting for selection bias. Genome Biology, 11(2), R14.Google Scholar
  86. Zhang, M. Q., Guo, Y., Powell, C. A., Doud, M. S., Yang, C. Y., Zhou, H., et al. (2016). Zinc treatment increases the titre of 'Candidatus Liberibacter asiaticus' in huanglongbing-affected citrus plants while affecting the bacterial microbiomes. Journal of Applied Microbiology, 120(6), 1616–1628.Google Scholar
  87. Zhu, J.-Y., Sae-Seaw, J., & Wang, Z.-Y. (2013). Brassinosteroid signalling. Development, 140(8), 1615–1620.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Xiaofei Liu
    • 1
  • Yu Zheng
    • 1
  • Gefu Wang-Pruski
    • 2
  • Yun Gan
    • 1
  • Bo Zhang
    • 3
  • Qiyong Hu
    • 1
  • Yixin Du
    • 1
  • Jianwei Zhao
    • 1
  • Lihua Liu
    • 1
    Email author
  1. 1.Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouChina
  2. 2.Department of Plant, Food, and Environmental Sciences, Faculty of AgricultureDalhousie UniversityTruroCanada
  3. 3.Biomarker Technologies CompanyBeijingChina

Personalised recommendations