Transcriptome profiling of periwinkle infected with Huanglongbing (‘Candidatus Liberibacter asiaticus’)
- 105 Downloads
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus worldwide. It is caused by a phloem-limited α-proteobacterium ‘Candidatus Liberibacter’, whose pathogenesis is unknown. Periwinkle (Catharanthus roseus), known to carry more HLB bacterium and develop HLB symptom in a short period of time, is an ideal host plant for studying the HLB bacterium. In this study, periwinkle was used as the host for HLB bacterium, and the next-generation sequencing technology RNA-Seq was used to evaluate the gene expression of the pairwise comparison for three categories of periwinkle leaf samples, including: healthy leaves (H), yellow leaves (Y), and symptom-just-occurred partially mottled leaves (S). The analysis identified 5432 differentially expressed genes (DEGs), associated with a wide range of functions and pathways involved in cell wall, transport, transcription factors, secondary metabolism, stress, signaling, plant hormone metabolism and signal transduction pathway, starch and sucrose metabolism pathway and photosystem and photosynthesis related pathways. The number of DEGs in the pairwise comparisons between Y and H is much more than that of between S and H. A total of 17 genes were further assayed by real-time qRT-PCR and the results were generally consistent with what obtained from RNA-Seq, with the correlation coefficients all greater than 0.92. The expressions of some genes regulated by the infection of HLB bacterium in periwinkles were consistent with previous studies on citrus. Genes involved in functions such as starch metabolism and hormone mediated defense are considered as useful guidance for HLB pathogenesis in future.
Keywords
Huanglongbing ‘Ca. Liberibacter asiaticus’ Periwinkle Transcriptome Host-pathogen interactionNotes
Acknowledgements
The research was financially supported by the National Natural Science Foundation of China (grant no. 31272009), Program of Fujian Provincial Science and Technology Department (2017R1025-4), Innovation Team of Plant Protection, Fujian Academy of Agricultural Sciences (STIT2017-1-8) and Program of Fujian Academy of Agricultural Sciences (YC2017-11). We appreciate the expertise of Dianlong Chen, Caiyun Deng, Yanyun Shi, Chunhua Xu for the technical support.
Funding
This study was funded by the National Natural Science Foundation of China (grant no. 31272009), Program of Fujian Provincial Science and Technology Department (2017R1025–4) and Innovation Team of Plant Protection, Fujian Academy of Agricultural Sciences (STIT2017-1-8).
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Human and animal studies
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Supplementary material
References
- Achor, D. S., Exteberria, E., Wang, N., Folimonova, S. Y., Chung, K. R., & Albrigo, L. G. (2010). Sequence of anatomical symptom observations in citrus affected with huanglongbing diseas. Plant Pathology Journal, 9, 56–64.Google Scholar
- Albrecht, U., & Bowman, K. D. (2008). Gene expression in Citrus sinensis, (L.) Osbeck following infection with the bacterial pathogen Candidatus, Liberibacter asiaticus causing huanglongbing in Florida. Plant Science, 175(3), 291–306.Google Scholar
- Albrecht, U., & Bowman, K. D. (2012). Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Science, s185–186(4), 118–130.Google Scholar
- Aritua, V., Achor, D., Gmitter, F. G., Albrigo, G., & Wang, N. (2013). Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One, 8(9), e73742.Google Scholar
- Baldwin, E., Plotto, A., Manthey, J., Mccollum, G., Bai, J., Irey, M., et al. (2012). Effect of liberibacter infection (huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: Chemical and physical analyses. Journal of Agricultural & Food Chemistry, 58(2), 1247–1262.Google Scholar
- Ball, S., Guan, H. P., James, M., Myers, A., Keeling, P., Mouille, G., Buléon, A., Colonna, P., & Preiss, J. (1996). From glycogen to amylopectin: A model for the biogenesis of the plant starch granule. Cell, 86(3), 349–352.Google Scholar
- Bové, J. M. (2006). Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88(1), 7–37.Google Scholar
- Bové, J. M., & Ayres, A. (2007). Etiology of three recent diseases of citrus in Sao Paulo state: Sudden death, variegated chlorosis and huanglongbing. IUBMB Life, 59(4–5), 346–354.Google Scholar
- Bradshaw Jr., H. D., Hollick, J. B., Parsons, T. J., Clarke, H. R., & Gordon, M. P. (1990). Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Molecular Biology, 14(1), 51–59.Google Scholar
- Chan, S. N., Bakar, N. A., Mahmood, M., Ho, C. L., Dzaki, N. M., & Shaharuddin, N. A. (2017). Identification and expression profiling of a novel Kunitz trypsin inhibitor (KTI) gene from turmeric, Curcuma longa, by real-time quantitative PCR (RT-qPCR). Acta Physiologiae Plantarum, 39, 12.Google Scholar
- Chen, Z., Agnew, J. L., Cohen, J. D., He, P., Shan, L., Sheen, J., et al. (2007). Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20131–20136.Google Scholar
- Choi, J., Huh, S. U., Kojima, M., Sakakibara, H., Paek, K. H., & Hwang, I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell, 19(2), 284–295.Google Scholar
- Curvers, K., Seifi, H., Mouille, G., De Rycke, R., Asselbergh, B., Van Hecke, A., et al. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to botrytis cinerea. Plant Physiology, 154(2), 847–860.Google Scholar
- Dannenhoffer, J. M., Schulz, A., Skaggs, M. I., Bostwick, D. E., & Thompson, G. A. (1997). Expression of the phloem lectin is developmentally linked to vascular differentiation in curcurbits. Planta, 201, 405–414.Google Scholar
- De Vleesschauwer, D., & Höfte, M. (2010). Abscisic acid-induced resistance against the brown spot pathogen cochliobolus miyabeanus in rice involves map kinase-mediated repression of ethylene signaling. Plant Physiology, 152(4), 2036–2052.Google Scholar
- De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., et al. (2012). Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiology, 158(4), 1833–1846.Google Scholar
- Delker, C., Stenzel, I., Hause, B., Miersch, O., Feussner, I., & Wasternack, C. (2006). Jasmonate biosynthesis in Arabidopsis thaliana-enzymes, products and regulation. Plant Biology, 8(3), 297–306.Google Scholar
- Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., et al. (2008). Activation of the indole-3-acetic acid: Amido synthetase gh3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell, 20, 228–240.Google Scholar
- Downes, B. P., Steinbaker, C. R., & Crowell, D. N. (2001). Expression and processing of a hormonally regulated β-Expansin from soybean. Plant Physiology, 126, 244–252.Google Scholar
- Erickson, H. S., Albert, P. S., Gillespie, J. W., Rodriguez-Canales, J., Marston Linehan, W., Pinto, P. A., et al. (2009). Quantitative RT-PCR gene expression analysis of laser. Nature Protocols, 4, 902–922.Google Scholar
- Etxeberria, E., Gonzalez, P., Achor, D., & Albrigo, G. (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological & Molecular Plant Pathology, 74(1), 76–83.Google Scholar
- Fan, J., Chen, C., Brlansky, R. H., Gmitter, J. F., & Li, Z. G. (2010). Changes in carbohydrate metabolism in Citrus sinensis infected with 'Candidatus Liberibacter asiaticus. Plant Pathology, 59, 1037–1043.Google Scholar
- Fan, J., Chen, C., Yu, Q., Brlansky, R. H., Li, Z. G., & Gmitter, F. G. (2011). Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by 'Candidatus Liberibacter asiaticus. Physiologia Plantarum, 143(3), 235–245.Google Scholar
- Folimonova, S. Y., & Achor, D. S. (2010). Early events of citrus greening (huanglongbing) disease development at the ultrastructural level. Phytopathology, 100(9), 949–958.Google Scholar
- Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., et al. (2011). Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiology, 155(1), 589–602.Google Scholar
- Fu, S., Shao, J., Zhou, C., & Hartung, J. S. (2016). Transcriptome analysis of sweet orange tress infected with 'Candidatus Liberibacter asiaticus' and two strains of Citrus Tristeza virus. BMC Genomics, 17, 349.Google Scholar
- Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., et al. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436.Google Scholar
- Garnier, M., & Bové, J. M. (1983). Transmission of the organism associated with citrus greening disease from sweet orange to periwinkle by dodder. Phytopathology, 73, 1358–1363.Google Scholar
- Gomi, K., Yamamoto, H., & Akimitsu, K. (2002). Characterization of a lipoxygenase gene in rough lemon induced by Alternaria alternata. Journal of General Plant Pathology, 68(1), 21–30.Google Scholar
- Grabherr, M. G., Haas, B., Yassour, M., Levin, J., Thompson, D., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29(7), 644–652.Google Scholar
- Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7220–7224.Google Scholar
- Grunewald, W., Karimi, M., Wieczorek, K., Van de Cappelle, E., Wischnitzki, E., Grundler, F., et al. (2008). A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology, 148(1), 358–368.Google Scholar
- Iglesias, V. A., & Meins, F. (2000). Movement of plant viruses is delayed in a β-1, 3- glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant Journal for Cell & Molecular Biology, 21(2), 157–166.Google Scholar
- Jagoueix, S., Bové, J. M., & Garnier, M. (1994). The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. International Journal of Systematic Bacteriology, 44, 397–386.Google Scholar
- Jagoueix, S., Bové, J. M., & Garnier, M. (1996). PCR detection of the two 'Candidatus' Liberobacter species associated with greening disease of citrus. Molecular and Cellular Probes, 10(1), 43–50.Google Scholar
- Jameson, P. E., Zhang, H., & Lewis, D. (2017). Cytokinins. Encyclopedia of Applied Plant Sciences, 114(8), 391–402.Google Scholar
- Journot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 18, 3289–3302.Google Scholar
- Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A., et al. (1998). Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate/phosphate antiporter. Plant Cell, 10(1), 10.Google Scholar
- Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(Database issue), D480–D484.Google Scholar
- Kant, S., Bi, Y.-M., Zhu, T., & Rothstein, S. J. (2009). Saur39, a small auxin-up rna gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology, 151(2), 691–701.Google Scholar
- Kellner, F., Kim, J., Clavijo, B. J., Hamilton, J. P., Childs, K. L., Vaillancourt, B., et al. (2015). Genome-guided investigation of plant natural product biosynthesis. Plant Journal for Cell & Molecular Biology, 82, 680–692.Google Scholar
- Killiny, N., Valim, M. F., Jones, S. E., Omar, A. A., Hijaz, F., Gmitter, F. G., et al. (2017). Metabolically speaking: Possible reasons behind the tolerance of 'Sugar Belle' mandarin hybrid to huanglongbing. Plant Physiology and Biochemistry, 116, 36–47.Google Scholar
- Kim, J. S., Sagaram, U. S., Burns, J. K., Li, J. L., & Wang, N. (2009). Response of sweet orange (citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: Microscopy and microarray analyses. Phytopathology, 99(1), 50–57.Google Scholar
- Kusajima, M., Yasuda, M., Kawashima, A., Nojiri, H., Yamane, H., Nakajima, M., et al. (2010). Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. Journal of General Plant Pathology, 76(2), 161–167.Google Scholar
- Lasat, M. M., Pence, N. S., Garvin, D. F., Ebbs, S. D., & Kochian, L. V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 51(342), 71–79.Google Scholar
- Lee, J. R., Boltz, K. A., & Lee, S. Y. (2014). Molecular chaperone function of arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin. Biochemical & Biophysical Research Communications, 443(1), 18–21.Google Scholar
- Liao, H.-L., & Burns, J. K. (2012). Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: Comparison with girdled fruit. Journal of Experimental Botany, 63(8), 3307–3319.Google Scholar
- Llorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., et al. (2008). Repression of the auxin response pathway increases arabidopsis susceptibility to necrotrophic fungi. Molecular Plant, 1(3), 496–509.Google Scholar
- Mafra, V., Martins, P. K., Francisco, C. S., Ribeiro-Alves, M., Freitas-Astúa, J., & Machado, M. A. (2013). Candidatus Liberibacter americanus' induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genomics, 14(1), 247.Google Scholar
- Martinelli, F., Uratsu, S., Albrecht, U., Reagan, R. L., Phu, M. L., Britton, M., et al. (2012). Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS One, 7(5), e38039.Google Scholar
- Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology, 8(4), 409–414.Google Scholar
- Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of nbs-lrr-encoding genes in arabidopsis. Plant Cell, 15(4), 809–834.Google Scholar
- Mukhtar, S. M., Deslandes, L., Auriac, M. C., Marco, Y., & Somssich, I. E. (2008). The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. The Plant Journal, 56(6), 935–947.Google Scholar
- Musetti, R., Paolacci, A., Ciaffi, M., Tanzarella, O. A., Polizzotto, R., Tubaro, F., et al. (2010). Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology, 100(4), 390–399.Google Scholar
- Nehela, Y., Hijaz, F., Elzaawely, A. A., El-Zahaby, H. M., & Killiny, N. (2018). Citrus phytohormonal response to Candidatus Liberibacter asiaticus and its vector Diaphorina citri. Physiological and Molecular Plant Pathology, 102, 24–35.Google Scholar
- Ohta, M., Ohme-Takagi, M., & Shinshi, H. (2000). Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. The Plant Journal, 22(1), 29–38.Google Scholar
- Owens, R., Blackburn, M., & Ding, B. (2001). Possible involvement of the phloem lectin in long-distance viroid movement. Molecular Plant-Microbe Interactions, 14(7), 905–909.Google Scholar
- Pandey, S. P., & Somssich, I. E. (2009). The role of wrky transcription factors in plant immunity. Plant Physiology, 150(4), 1648–1655.Google Scholar
- Peng, M. S., Baga, M. H., Chibbar, R. N., & Gao, M. (2000). Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiology, 124(1), 265.Google Scholar
- Pirone, C. L., Alexander, L. C., & Lamp, W. O. (2005). Patterns of starch accumulation in alfalfa subsequent to potato leafhopper (Homoptera: Cicadellidae) injury. Environmental Entomology, 34(1), 199–204.Google Scholar
- Planet, P., Jagoueix, S., Bové, J. M., & Garnier, M. (1995). Detection and characterization of the African citrus greening liberobacter by amplification, cloning and sequencing of the rplKAJL-rpoBC operon. Current Microbiology, 30(3), 137–141.Google Scholar
- Pustika, A. B., Subandiyah, S., Holford, P., Beattie, G. A. C., Iwanami, T., & Masaoka, Y. (2008). Interactions between plant nutrition and symptom expression in mandarin trees infected with the disease huanglongbing. Australasian Plant Disease Notes, 3(1), 112–115.Google Scholar
- Read, S., & Northcote, D. (1983). Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta, 158(2), 119–127.Google Scholar
- Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317.Google Scholar
- Sagaram, U. S., DeAngelis, K. M., Trivedi, P., Andersen, G. L., Lu, S. E., & Wang, N. (2009). Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Applied and Environmental Microbiology, 75(6), 1566–1577.Google Scholar
- Saponari, M., De Bac, G., Breithaupt, J., Loconsole, G., Yokomi, R. K., & Catalano, L. (2010). First report of 'Candidatus Liberibacter asiaticus' associated with huanglongbing in sweet orange in Ethiopia. Plant Disease, 94, 482.Google Scholar
- Schneider, H. (1968). Anatomy of greening-diseased sweet orange shoots. Phytopathology, 58, 262–266.Google Scholar
- Synková, H., Semorádová, Š., & Burketová, L. (2004). High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plant Cell, Tissue and Organ Culture, 79(2), 169–179.Google Scholar
- Teixeira, D. C., Ayres, A. J., Kitajima, E. W., Tanaka, F. A., Danet, J. L., Jagoueix-Eveillard, S., et al. (2005). First report of a huanglongbing-like disease of citrus in Sao Paulo state, Brazil, and association of a new Liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Disease, 89(1), 107.Google Scholar
- Teixeira, D. C., Eveillard, S., Sirand-Pugnet, P., Wulff, A., Saillard, C., Ayres, A. J., et al. (2008). The tufB-secE-nusG-rplKAJL-rpoB gene cluster of the liberibacters: Sequence comparisons, phylogeny and speciation. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 6), 1414–1421.Google Scholar
- Tian, S., Lu, L., Labavitch, J. M., Webb, S. M., Yang, X., Brown, P. H., et al. (2014). Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation. Journal of Experimental Botany, 65(4), 953–964.Google Scholar
- Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515.Google Scholar
- Trivedi, P., Duan, Y. P., & Wang, N. (2010). Huanglongbing a systemic disease, restructures the bacterial community associated with citrus roots. Applied and Environmental Microbiology, 76(11), 3427–3436.Google Scholar
- Vandesompele, J., Preter, K. D., Pattyn, F., Poppe, B., Roy, N. V., Paepe, A. D., et al. (2002). Accurate normalization of real-time quantitative rt-pcr data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), research0034.1–research0034.11.Google Scholar
- Vidhyasekaran, P. (2015). Plant hormone signaling Systems in Plant Innate Immunity. Dordrecht: Springer.Google Scholar
- Villechanoux, S., Garnier, M., Renaudin, J., & Bové, J. M. (1992). Detection of several strains of the bacterium-like organism of citrus greening disease by DNA probes. Current Microbiology, 24(2), 89–95.Google Scholar
- Wang, N., & Trivedi, P. (2013). Citrus huanglongbing: A newly relevant disease presents unprecedented challenges. Phytopathology, 103(7), 652–665.Google Scholar
- Wang, D., Pajerowska-Mukhtar, K., Culler, A., & Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology, 17(20), 1784–1790.Google Scholar
- Wang, Z.-W., Bei, X.-J., Zhu, S.-P., Ma, Y.-Y., & Yang, R.-T. (2011). Recent advances in Phytohormone regulated plant resistance to pathogens. Journal of Anhui Agricultural Sciences, 39(15), 9035–9038,9041.Google Scholar
- Wang, Y., Zhou, L., Yu, X., Stover, E., Luo, F., & Duan, Y. (2016). Transcriptome profiling of huanglongbing (HLB) tolerant and susceptible Citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 7(74), 933.Google Scholar
- Weber, A. P. (2004). Solute transporters as connecting elements between cytosol and plastid stroma. Current Opinion in Plant Biology, 7(3), 247–253.Google Scholar
- Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany, 95(5), 707–735.Google Scholar
- Xu, X., Chen, C., Fan, B., & Chen, Z. (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 18(5), 1310–1326.Google Scholar
- Yang, P., Chen, C., Wang, Z., Fan, B., & Chen, Z. A. (1999). Pathogen-and salicylic acidinduced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant Journal, 18(2), 141–149.Google Scholar
- Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis for rna-seq: Accounting for selection bias. Genome Biology, 11(2), R14.Google Scholar
- Zhang, M. Q., Guo, Y., Powell, C. A., Doud, M. S., Yang, C. Y., Zhou, H., et al. (2016). Zinc treatment increases the titre of 'Candidatus Liberibacter asiaticus' in huanglongbing-affected citrus plants while affecting the bacterial microbiomes. Journal of Applied Microbiology, 120(6), 1616–1628.Google Scholar
- Zhu, J.-Y., Sae-Seaw, J., & Wang, Z.-Y. (2013). Brassinosteroid signalling. Development, 140(8), 1615–1620.Google Scholar