European Journal of Plant Pathology

, Volume 151, Issue 2, pp 427–438 | Cite as

Bacterial canker of cherry trees, Prunus avium, in South Africa

  • M. Otto
  • Y. Petersen
  • J. Roux
  • J. Wright
  • T. A. CoutinhoEmail author


In the 1980’s the causal agents of bacterial canker of cherry trees in South Africa was reported to be Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. morsprunorum. Subsequently, no further studies were undertaken on the disease or causal agents. The aim of the current study was to conduct field surveys to determine the current situation pertaining to bacterial canker in the major cherry producing areas of South Africa. Following isolations from infected trees, strains were characterized using biochemical as well as multilocus sequence analyses (MLSA). Pathogenicity tests were undertaken with immature cherry fruit as well as three different cherry cultivars. Although symptoms of bacterial canker were present in all areas surveyed, P. syringae isolates were only isolated from three sites in the Western Cape Province. The isolates collected in this study showed a hypersensitive response on tobacco leaves and were pathogenic on immature cherry fruit and cherry trees. The phenotypic tests and MLSA using four genes (cts, gapA, gyrB and rpoD) showed phenotypic and genetic identity with Pseudomonas syringae pv. syringae. Selected strains induced a hypersensitive response on tobacco leaves and were pathogenic on immature cherry fruit and green cherry tree shoots. The current study shows that P. syringae pv. syringae is responsible for bacterial canker in the Western Cape Province, South Africa.


Pseudomonas syringae MLSA Prunus Stone fruit 



The Horticultural Knowledge Group (HORTGRO) and National Research Foundation (NRF) are acknowledged for funding this research. In addition, the cherry farmers are acknowledged for access to their farms and information provided.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human participants and animal studies

No humans or animals were involved in the execution of this research. All authors have consented to the submission of this manuscript to EJPP.


  1. Abbasi, V., Rahimian, H., & Tajick-Ghanbari, M. A. (2013). Genetic variability of Iranian strains of Pseudomonas syringae pv. syringae causing bacterial canker disease of stone fruits. European Journal of Plant Pathology, 135, 225–235.CrossRefGoogle Scholar
  2. Agrios, G. N. (2005). Plant Pathology (5th ed.). Amsterdam: Elsevier Academic Press.Google Scholar
  3. Ait Tayeb, L., Ageron, E., Grimont, F., & Grimont, P. A. (2005). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology, 156, 763–773.CrossRefPubMedGoogle Scholar
  4. Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., Schuenzel, E. L., Lacy, G. H., Sun, X., Jones, J. B., Castillo, J. A., Bull, C. T., Leman, S., Guttman, D. S., Setubal, J. C., & Vinatzer, B. A. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100, 208–215.CrossRefPubMedGoogle Scholar
  5. Alonso, J. S. (2011). Producción, comercialización, Mercado y oportunidades de la cereza. [Sweet cherry production, marketing, and market opportunities]. VidaRURAL, 23, 46–50.Google Scholar
  6. Annesi, T., Motta, E., & Forti, E. (1997). First report of Blumeriella jaapii teleomorph on wild cherry in Italy. Plant Disease, 81, 1214.CrossRefGoogle Scholar
  7. Balaž, J., Iličić, R., Ognjanov, V., Ivanović, Ž., & Popović, T. (2016). Etiology of bacterial canker on young sweet cherry trees in Serbia. Journal of Plant Pathology, 98(2), 285–294.Google Scholar
  8. Barakat, R. M., & Johnson, D. A. (1997). Expansion of cankers caused by Leucostoma cincta on sweet cherry trees. Plant Disease, 81, 1391–1394.CrossRefGoogle Scholar
  9. Bassi, D. (1999). Apricot culture: present and future. Acta Horticulturae, 488, 35–40.CrossRefGoogle Scholar
  10. Berge, O., Monteil, C. L., Bartoli, C., Chandeysson, C., Guilbaud, C., Sands, D. C., & Morris, C. E. (2014). A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One, 9, e105547.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bultreys, A., & Kaluzna, M. (2010). Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. Journal of Plant Pathology, 92, S1–S21.Google Scholar
  12. Casals, C., Segarra, J., De Cal, A., Lamarca, N., & Usall, J. (2015). Overwintering of Monilinia spp. on mummified stone fruit. Journal of Phytopathology, 163, 160–167.CrossRefGoogle Scholar
  13. Chandel, V., Rana, T., Hallan, V., & Zaidi, A. A. (2011). Detection of Prunus necrotic ring spot virus in plum, cherry and almond by serological and molecular techniques from India. Archives of Phytopathology and Plant Protection, 44, 1779–1784.CrossRefGoogle Scholar
  14. Crosse, J. E. (1966). Epidemiological relations of the pseudomonad pathogens of deciduous fruit trees. Annual Review of Phytopathology, 14, 291–310.CrossRefGoogle Scholar
  15. Doidge, E.M., Bottomley, A.M., van der Planck, J.E., and Pauer, G.D. 1953. A revised list of plant diseases in South Africa. Union of South Africa, Department of Agriculture, Science Bulletin No. 346, 1–122.Google Scholar
  16. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., & Grimont, P. A. (1999). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). International Journal of Systematic Bacteriology, 49, 469–478.CrossRefPubMedGoogle Scholar
  17. Goszczynska, T., Serfontein, J. J., & Serfontein, S. (2000). Introduction to practical phytobacteriology: A manual for phytobacteriology (2nd ed.). Pretoria, South Africa: Safrinet.Google Scholar
  18. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment and editor and analyses program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  19. Hwang, M. S. H., Morgan, R. L., Sakar, S. F., Wang, P. W., & Guttman, D. S. (2005). Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology, 71, 5182–5191.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Iličić, R., Balaž, J., Stojšin, V., & Jošić, D. (2016). Characterization of Pseudomonas syringae pathovars from different sweet cherry cultivars by RAPD analyses. Genetika, 48(1), 285–295.CrossRefGoogle Scholar
  21. Kałużna, M., & Sobiczewski, P. (2009). Virulence of Pseudomonas syringae pv. syringae pathovars and races originating from stone fruit trees. Phytopathologia, 54, 71–79.Google Scholar
  22. Kałużna, M., Ferrante, P., Sobiczewski, P., & Scortichini, M. (2010a). Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. Journal of Plant Pathology, 92, 781–787.Google Scholar
  23. Kałużna, M., Pulawska, J., & Sobiczewski, P. (2010b). The use of PCR melting profile for typing Pseudomonas syringae isolates from stone fruit trees. European Journal of Plant Pathology, 126, 437–443.CrossRefGoogle Scholar
  24. Kałużna, M., Willems, A., Pothier, J. l. F., Ruinelli, M., Sobiczewski, P., & Puławska, J. (2016a). Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Systemic and Applied Microbiology, 39, 370–377.CrossRefGoogle Scholar
  25. Kałużna, M., Willems, A., Pothier, J. F., Ruinelli, M., Sobiczewski, P., & Puławska, J. (2016b). Characterization and genetic diversity of causal agent of stone fruit bacterial canker Pseudomonas cerasi, a new pathogen of cherry. Acta Horticulturae, 1149, 9–14.Google Scholar
  26. Karimi-Kurdistani, G., & Harighi, B. (2008). Phenotypic and molecular properties of Pseudomonas syringae pv. syringae the causal agent of bacterial canker of stone fruit trees in Kurdistan province. Journal of Plant Pathology, 90, 81–86.Google Scholar
  27. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Khayamie, S., Niknejad, K. N., Rabie, S., & Ebadie, A. A. (2009). Genetic characterization of P. syringae pv. syringae strains from stone fruits based on RAPD analysis in Iran. Agricultura Tropica et Subtropica, 42(4), 162–166.Google Scholar
  29. King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44(2), 301–307.PubMedGoogle Scholar
  30. Lamichhane, J. R., Varvaro, L., Parisi, L., Audergon, J.-M., & Morris, C. E. (2014). Disease and frost damage of woody plants caused by Pseudomonas syringae: Seeing the forest for the trees. Advances in Agronomy, 126, 235–295.CrossRefGoogle Scholar
  31. Latorre, B. A., & Jones, A. L. (1979). Pseudomonas morsprunorum,the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology, 69, 335–339.CrossRefGoogle Scholar
  32. Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. In T. F. Preece (Ed.), Methods in plant pathology (pp. 37–131). Oxford: Blackwell Scientific Publications.Google Scholar
  33. Lelliott, R. A., Billing, E., & Hayward, A. C. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology, 29, 470–489.CrossRefPubMedGoogle Scholar
  34. Lim, T. K. 2012. Edible medicinal and non-medicinal plants. Volume 4, Fruits. Springer, Dordrecht.Google Scholar
  35. Luz, J.P.M. 1997. Detection and epidemiology of bacterial canker (Pseudomonas syringae) on wild cherry (Prunus avium). PhD thesis. University of Reaging.Google Scholar
  36. Ménard, M., Sutra, L., Luisetti, J., Prunier, J. P., & Gardan, L. (2003). Pseudomonas syringae pv. avii (pv. nov.), the causal agent of bacterial canker of wild cherries (Prunus avium) in France. European Journal of Plant Pathology, 109, 565–576.CrossRefGoogle Scholar
  37. Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffière, A., Yan, S., Dominguez, H., & Thompson, B. M. (2008). The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. Multidisciplinary Journal of Microbial Ecology, 2, 321–334.Google Scholar
  38. Nowell, R. W., Laue, B. E., Sharp, P. M., & Green, S. (2016). Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. Molecular Plant Pathology, 17, 1409–1424.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parkinson, N., Bryant, R., Bew, J., & Elphinstone, J. (2011). Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology, 60, 338–344.CrossRefGoogle Scholar
  40. Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.CrossRefPubMedGoogle Scholar
  41. Potelwa, Y., and Ntombela, S. 2015. South African Fruit Trade Flow. Issue 17. Online publication.
  42. Roos, I. M.M. 1986. Bacterial canker of stone fruit trees caused by Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. morsprunorum: Numerical analyses of phenotypic features of the pathogens and systemic invasion of host tissue. PhD thesis. University of Stellenbosch.Google Scholar
  43. Roos, I. M. M., & Hattingh, M. J. (1983). Fluorescent pseudomonads associated with bacterial canker of stone fruit in South Africa. Plant Disease, 67, 1267–1269.CrossRefGoogle Scholar
  44. Roos, I. M. M., & Hattingh, M. J. (1986). Bacterial canker of sweet cherry in South Africa. Phytophylactica, 18, 1–4.Google Scholar
  45. Roos, I. M. M., & Hattingh, M. J. (1987a). Pathogenicity and numerical analyses of phenotypic features of Pseudomonas syringae strains isolated from deciduous fruit trees. Phytopathology, 77, 900–908.CrossRefGoogle Scholar
  46. Roos, I. M. M., & Hattingh, M. J. (1987b). Systemic invasion of cherry leaves and petioles by Pseudomonas syringae pv. morsprunorum. Phytopathology, 77, 1246–1252.CrossRefGoogle Scholar
  47. Sarkar, S. F., & Guttman, D. S. (2004). Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 70, 1999–2012.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sholberg, P. L., & Quamme, H. A. (1999). Dieback of pome fruit rootstocks caused by Pseudomonas syringae. Canadian Journal of Plant Science, 79, 387–394.CrossRefGoogle Scholar
  49. Stavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75, 2230–2235.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Suslow, T. V., Schroth, M. N., & Isaka, M. (1982). Appication of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917–918.CrossRefGoogle Scholar
  51. Swofford, D. L. 2002. Phylogenetic Analyses Using Parsimony (and other methods). Version 4.0b10. Sinauer Associates, Sunderland.Google Scholar
  52. Vicente, J. G., Alves, J. P., Russell, K., & Roberts, S. J. (2004). Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. European Journal of Plant Pathology, 110, 337–351.CrossRefGoogle Scholar
  53. Watson, N. 2016. South Africa: extreme drought and heat has left its mark on cherry volumes. Accessed 5 June 2017.
  54. Wenneker, M., Meijer, H., Maas, F. M., de Bruine, A., Vink, P., & Pham, K. (2013). Bacterial canker of plum trees (Prunus domestica), caused by Pseudomonas syringae pathovars, in the Netherlands. Acta Horticulturae, 985, 235–239.CrossRefGoogle Scholar
  55. Yan, S., Liu, H., Mohr, T. J., Jenrette, J., Chiodini, R., Zaccardelli, M., Setubal, J. C., & Vinatzer, B. A. (2008). Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Applied and Environmental Microbiology, 74, 3171–3181.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Young, J. M., & Triggs, C. M. (1994). Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902. Journal of Applied Bacteriology, 77, 195–207.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • M. Otto
    • 1
  • Y. Petersen
    • 2
  • J. Roux
    • 3
  • J. Wright
    • 4
  • T. A. Coutinho
    • 1
    Email author
  1. 1.Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  2. 2.Agricultural Research Council, Infruitec-NietvoorbijStellenboschSouth Africa
  3. 3.Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  4. 4.PretoriaSouth Africa

Personalised recommendations