Skip to main content
Log in

Interactive effects of CO2 concentrations and Alternaria brassicae (Berk.) Sacc. infection on defense signalling in Brassica juncea (L.) Czern. & Coss.

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Elevated CO2 is known to affect plant’s constitutive defense by bringing about changes in its structure and biochemistry. Recently, it has been seen that not only constitutive defense but also induced defense is altered by elevated concentrations of CO2. Phytohormones such as salicylic acid and jasmonic acid play an important role in modulating induced defense of plants. Concentrations of these hormones vary due to elevated CO2 that alter plant-pathogen interactions. While, most of these studies report higher levels of SA, very few have reported increase in JA. These observations have mainly been employed to explain increased susceptibility to herbivory. There are very few reports with reference to fungal pathogens and plant defense signalling under elevated CO2. Keeping this in mind, an experiment was conducted in open top chambers (OTCs) in Department of Botany, University of Delhi to assess the impact of elevated CO2 and pathogen Alternaria brassicae on the levels of JA and SA, their respective signalling pathway and subsequently defense of Brassica juncea plants. Under elevated CO2, the activity of phenylalanine ammonia lyase increased, leading to a concomitant rise in the concentration of total phenols. The constitutive levels of salicylic acid (SA) and jasmonic acid (JA) enhanced. When inoculated with Alternaria brassicae, the CO2 concentrations interacted significantly to influence the concentrations of SA and JA; and transcript levels of downstream genes of defense signalling pathways. Under elevated CO2, on pathogen infection the concentration of SA decreased while that of JA increased. Correspondingly the transcript levels of NPR-1, PR1, PR-2, PR-12 and PR-13 were affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–372.

    Article  PubMed  Google Scholar 

  • Ainsworth, E. A., & Rogers, A. (2008). The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270.

    Article  Google Scholar 

  • Ballhorn, D. J., Reisdorff, C., & Pfanz, H. (2011). Quantitative effects of enhanced CO2 on jasmonic acid induced plant volatiles of lima bean (Phaseolus lunatus L.) Journal of Applied Botany and Food Quality, 84, 65–71.

    CAS  Google Scholar 

  • Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany, 58, 15–16.

    Google Scholar 

  • Cao, B., Dang, Q. L., & Zhang, S. R. (2007). Relationship between photosynthesis and leaf nitrogen concentration under ambient and elevated [CO2] in white birch (Betula papyrifera) seedlings. Tree Physiology, 27, 891–899.

    Article  CAS  PubMed  Google Scholar 

  • Casteel, C. L., Segal, L. M., Niziolek, O. K., Berenbaum, M. R., & DeLucia, E. H. (2012). Elevated carbon dioxide increases salicylic acid in Glycine max. Environmental Entomology, 41, 1435–1442.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, S., Luck, J., Freeman, A., Norton, R. M., Garrett, K. A., Percy, K. E., Hopkin, A. A., Davis, C., & Karnosky, D. F. (2008). Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 3, 1–15.

    Google Scholar 

  • Daayf, F., Schmitt, A., & Belanger, R. R. (1997). Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis. Plant Physiology, 113, 719–727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson, M. (2003). Molecular plant pathology. London: BIOS Scientific Publishers.

    Google Scholar 

  • Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., & McElrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330.

    Article  Google Scholar 

  • Fu, X., Ye, L., Kang, L., & Ge, F. (2010). Elevated CO2 shifts the focus of tobacco plant defences from cucumber mosaic virus to the green peach aphid. Plant, Cell and Environment, 33, 2056–2064.

    Article  CAS  PubMed  Google Scholar 

  • Gapper, N. E., Norris, G. E., Clarke, S. F., Lill, R. E., & Jameson, P. E. (2002). Novel jasmonate amino acid conjugates in Asparagus officinalis during harvest-induced and natural foliar senescence. Physiologia Plantarum, 114, 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez, S., & Solano, R. (2013). Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Frontiers in Plant Science, 4, 1–11.

    Article  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H., Sun, Y., Ren, Q., Zhu-Salzman, K., Wang, C. Z., Kang, L., & Ge, F. (2012). Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS One, 7, e41426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, L., Ren, Q., Sun, Y., Ye, L., Cao, H., & Ge, F. (2012). Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. Plant Biology, 14, 905–913.

    Article  CAS  PubMed  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2007). Summary for policymakers. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Mayer (Eds.), Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Itagaki, K., Shibuya, T., Tojo, M., Endo, R., & Kitaya, Y. (2015). Development of powdery mildew fungus on cucumber leaves acclimatized to different CO2 concentrations. Hortscience, 50, 1662–1665.

    CAS  Google Scholar 

  • Janda, M., & Ruelland, E. (2015). Magical mystery tour: salicylic acid signalling. Environmental and Experimental Botany, 114, 117–128.

    Article  CAS  Google Scholar 

  • Jaypal, R., & Mahadevan, A. (1968). Biochemical changes in banana leaves in response to leaf spot pathogenesis. Indian Phytopathology, 21, 43–48.

    Google Scholar 

  • Kolte, S. J. (1985). Diseases of annual edible oilseed crops, Vol. II, Rapeseed-Mustard and Sesame Diseases. Boca Raton: CRC Press Inc..

    Google Scholar 

  • Lazebnik, J., Frago, E., Dicke, M., & van Loon, J. J. A. (2014). Phytohormone mediation of interactions between herbivores and plant pathogens. Journal of Chemical Ecology, 40, 730–741.

    Article  CAS  PubMed  Google Scholar 

  • Luck, J., Spackman, M., Freeman, A., Tre˛bicki, P., Griffiths, W., Finlay, K., & Chakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 13–121.

  • Maffei, M. E., Mithöfer, A., & Boland, W. (2007). Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry, 68, 2946–2959.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, S., Upadhyay, S., Wajid, S., Ram, M., Jain, D. C., Singh, V. P., Abdin, M. Z., & Kapoor, R. (2015). Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza, 25, 345–357.

    Article  CAS  PubMed  Google Scholar 

  • Marmath, K. K., Giri, P., Taj, G., Pandey, D., & Kumar, A. (2013). Effect of zeatin on the infection process and expression of MAPK-4 during pathogenesis of Alternaria brassicae in non-host and host Brassica plants. African Journal of Biotechnology, 12, 2164–2174.

    Article  Google Scholar 

  • Mathpal, P., Punetha, H., Tewari, A. K., & Agrawal, S. (2011). Biochemical defense mechanism in rapeseed-mustard genotypes against Alternaria blight disease. Journal Oilseed Brassica, 2, 87–94.

    Google Scholar 

  • Mathur, P., Sharma, E., Singh, S. D., Bhatnagar, A. K., Singh, V. P., & Kapoor, R. (2013). Effect of elevated CO2 on infection of three foliar diseases in oilseed Brassica juncea. Journal of Plant Pathology, 95, 135–144.

    Google Scholar 

  • Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G. H., Sonnewald, U., & Mock, H. P. (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell and Environment, 29, 126–137.

    Article  CAS  PubMed  Google Scholar 

  • Meena, P. D., Awasthi, R. P., Chattopadhyay, C., Kolte, S. J., & Kumar, A. (2010). Alternaria blight: a chronic disease in rapeseed- mustard. Journal of Oilseed Brassica, 1, 1–11.

    Google Scholar 

  • Nadernejad, N., Ahmadimoghadam, A., Hossyinifard, J., & Poorseyedi, S. (2013). Evaluation of PAL activity, phenolic and flavonoid contents in three pistachio (Pistacia vera L.) cultivars grafted onto three different rootstocks. Journal of Stress Physiology and Biochemistry, 9, 84–97.

    Google Scholar 

  • Nayanakantha, N. M. C., Rawat, S., Ali, S., & Grover, S. (2016). Differential expression of defense-related genes in Sinapis alba and Brassica juncea upon the infection of Alternaria brassicae. Tropical Agricultural Research, 27, 123–136.

    Article  Google Scholar 

  • Pieterse, C. M. J., der Does, D., Van, Z. C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.

    Article  CAS  PubMed  Google Scholar 

  • Pratap, P., Meena, P. D., Singh, B. K., Meena, H. S., Meena, S. S., Sharma, P., Majumdar, R., & Singh, D. (2014). Development and evaluation of Alternaria blight tolerant lines in Indian mustard (Brassica juncea). Journal of Oilseed Brassica, 5, 141–148.

    Google Scholar 

  • Reddy, A. R., Rasineni, G. K., & Raghavendra, A. S. (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99, 46–57.

    CAS  Google Scholar 

  • Shekhawat, K., Rathore, S. S., Premi, O. P., Kandpal, B. K., & Chauhan, J. S. (2012). Advances in agronomic Management of Indian Mustard (Brassica juncea (L.) Czernj. Cosson): An overview. International Journal of Agronomy, 2012, 1–14.

    Article  Google Scholar 

  • Siriphanich, J., & Kader, A. A. (1985). Effects of CO2 on total phenolics, phenylalanine ammonia lyase, and polyphenol oxidase in lettuce tissue. Journal of the American Society for Horticultural Science, 110, 249–253.

    CAS  Google Scholar 

  • Stam, J. M., Kroes, A., Li, Y., Gols, R., Loon, J. J. A., & Poelman, E. H. (2014). Plant interactions with multiple insect herbivores: from community to genes. Annual Revew on Plant Biology, 65, 1–25.

    Article  Google Scholar 

  • Sun, Y. C., Cao, H. F., Yin, J., Kang, L., & Ge, F. (2010). Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant, Cell and Environment, 33, 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Guo, H., Zhu-Salzman, K., Kang, L., & Ge, F. (2013). Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Science, 210, 128–140.

    Article  CAS  PubMed  Google Scholar 

  • Taub, D. R., & Wang, X. Z. (2008). Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology, 50, 1365–1374.

    Article  CAS  PubMed  Google Scholar 

  • Terashima, I., Yanagisawa, S., & Sakakibara, H. (2014). Plant responses to CO2: background and perspectives. Plant Cell Physiology, 55, 237–240.

    Article  CAS  PubMed  Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Vishwanath, & Kolte, S. J. (1997). Biochemical variation among three isolates of Alternaria brassicae. Indian Phytopathology, 50, 437–438.

    CAS  Google Scholar 

  • Walling, L. L. (2009). Adaptive defense responses to pathogens and insects. Advances in Botanical Research, 51, 551–612.

    Article  CAS  Google Scholar 

  • Wang, W., Zheng, L. P., Wu, J. Y., & Tan, R. X. (2006). Involvement of nitric oxide in oxidative burst phenylalanine ammonia-lyase activation and taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide: Biology and Chemistry, 15, 351–358.

    Article  CAS  Google Scholar 

  • Wang, H., Ma, C., Li, Z., Ma, L., Wang, H., Ye, H., Xu, G., & Liu, B. (2010). Effects of exogenous methyl jasmonate on artemisinin biosynthesis and secondary metabolite in Artemisia annua L. Industrial Crops and Products, 31, 214–218.

    Article  Google Scholar 

  • Wheeler, B. E. J. (1969). An introduction to plant diseases. London: Wiley.

    Google Scholar 

  • Zavala, J. A., Casteel, C. L., DeLucia, E. H., & Berenbaum, M. R. (2008). Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceedings of the National Academy of Sciences of the United States of America, 105, 5129–5133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavala, J. A., Nabity, P. D., & DeLucia, E. H. (2013). An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annual Review on Entomology, 58, 79–97.

    Article  CAS  Google Scholar 

  • Zhang, S., Li, X., Sun, Z., Shao, S., Hu, L., Ye, M., Zhou, Y., Xia, X., Yu, J., & Shi, K. (2015). Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 66, 1951–1963.

Download references

Acknowledgements

The research work was sponsored by the Ministry of Environment, Forests and Climate Change (MoEFCC), New Delhi, Government of India. Thanks are also extended to Prof. Akshay Pradhan, Department of Genetics, University of Delhi for providing the culture of Alternaria brassicae. Piyush Mathur gratefully acknowledges University Grants Commission for providing research fellowship.

Funding

The research was funded by Ministry of Environment, Forests and Climate Change, Government of India (F.No. 19/70/2008-RE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor.

Ethics declarations

Competing interest

The author(s) declare no competing financial interests.

Animal studies and human participants

This study is in compliance with ethical standards. The research does not involve human participants and/or animals. PM executed the experiments, collected data, analyzed results, and helped in the preparation of the manuscript. RK and VPS designed the work. RK interpreted the results, wrote the main manuscript. All authors have reviewed and approved the manuscript.

Electronic supplementary material

Table S1

(DOCX 14 kb)

Fig. S1

(DOCX 46 kb)

Fig. S2

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, P., Singh, V.P. & Kapoor, R. Interactive effects of CO2 concentrations and Alternaria brassicae (Berk.) Sacc. infection on defense signalling in Brassica juncea (L.) Czern. & Coss.. Eur J Plant Pathol 151, 413–425 (2018). https://doi.org/10.1007/s10658-017-1382-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1382-7

Keywords

Navigation