European Journal of Plant Pathology

, Volume 150, Issue 3, pp 779–784 | Cite as

Multilocus sequence analysis supports a low genetic diversity among ‘Candidatus Phytoplasma australasia’ related strains infecting vegetable crops and periwinkle in Egypt

  • Yasmen El-Sisi
  • Ayman F. Omar
  • Samir A. Sidaros
  • Mohsen M. Elsharkawy
  • Xavier Foissac


Candidatus Phytoplasma australasia’ causes important damages to the Egyptian vegetable crop production. A prerequisite for controlling the different diseases it causes to eggplant, tomato and squash, is to trace its propagation pathways. To allow the differentiation of ‘Ca. P. australasia’ strains, a multilocus sequence analysis protocol was developed. Four conserved phytoplama genes namely tuf, secY, dnaK and dppA, were selected among the CDS of a ‘Ca. P. aurantifolia’ genome draft. The corresponding genes were PCR amplified from tomato, eggplant and squash collected in 2010 from the governorates Sharkia, Elmynia and Beni sueif, as well as from Catharanthus roseus periwinkles collected in 2013 from Kafrelsheikh governorate. Sequence comparisons showed no diversity among the Egyptian isolates of Ca. P. australasia’ that also constitute a distinct cluster within the 16SrII-D taxonomic subgroup. This low diversity supports a common epidemiology for the different diseases affecting vegetable crops and periwinkle in Egypt and suggests that future investigations on insect vector should focus on polyphagous leafhoppers.


Cucurbit Eggplant Tomato Periwinkle MLSA 



Authors thank Sandrine Eveillard for helpful discussions and critical review of the manuscript. The whole Genome Shotgun was produced in the frame of the Phytoplasma Genome Sequencing Initiative (PGSI) of the European COST action FA0807 - Integrated management of phytoplasma epidemics in different crop systems.

Author contributions

AFO and XF and conceived and designed the study. AFO, MMS and SAM collected samples. YES, AFO, SAM and MMS performed the experiments. XF carried out the data analysis. XF and AFO contributed to the writing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors read and approved the final manuscript.

Human studies and participants

There was no involvement of human participants and/or animals in the present study.


  1. AlKhazindar, M. (2014). Detection and molecular identification of aster yellows phytoplasma in date palm in Egypt. Journal of Phytopathology. doi: 10.1111/jph.12241.
  2. Arnaud, G., Malembic-Maher, S., Salar, P., Bonnet, P., Maixner, M., Marcone, C., Boudon-Padieu, E., & Foissac, X. (2007). Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence doree phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology. doi: 10.1128/aem.02323-06.
  3. Balakishiyeva, G., Qurbanov, M., Mammadov, A., Bayramov, S., Aliyev, J., & Foissac, X. (2011). Detection of 'Candidatus Phytoplasma brasiliense' in a new geographic region and existence of two genetically distinct populations. European Journal of Plant Pathology. doi: 10.1007/s10658-011-9773-7.
  4. Bonfield, J. K., Smith, K. F., & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research, 24, 4992–4999.CrossRefGoogle Scholar
  5. Cai, H., Wang, L., Mu, W., Wan, Q., Wei, W., Davis, R. E., Chen, H., & Zhao, Y. (2016). Multilocus genotyping of a 'Candidatus Phytoplasma aurantifolia'-related strain associated with cauliflower phyllody disease in China. Annals of Applied Biology. doi: 10.1111/aab.12281.
  6. Chung, W. C., Chen, L. L., Lo, W. S., Lin, C. P., & Kuo, C. H. (2013). Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. Plos One. doi: 10.1371/journal.pone.0062770.
  7. Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Danet, J. L., Balakishiyeva, G., Cimerman, A., Sauvion, N., Marie-Jeanne, V., Labonne, G., Laviňa, A., Batlle, A., Križanac, I., Škorić, D., Ermacora, P., Ulubaş Serçe, Ç., Çağlayan, K., Jarausch, W., & Foissac, X. (2011). Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and the existence of inter species recombination. Microbiology, 157(2), 438–450.CrossRefPubMedGoogle Scholar
  9. ElSayed, A. I., & Boulila, M. (2014). Molecular identification and phylogenetic analysis of sugarcane yellow leaf phytoplasma (SCYLP) in Egypt. Journal of Phytopathology. doi: 10.1111/jph.12156.
  10. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefPubMedGoogle Scholar
  11. Foissac, X., & Wilson, M. R. (2009). Current and possible future distributions of phytoplasma diseases and their vectors. In P. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 309–324). Wallingford: CABI.CrossRefGoogle Scholar
  12. IRPCM phytoplasma/Spiroplasma. (2004). 'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54, 1243–1255.CrossRefGoogle Scholar
  13. Johannesen, J., Foissac, X., Kehrli, P., & Maixner, M. (2012). Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen. Plos One. doi: 10.1371/journal.pone.0051809.
  14. Kollar, A., & Seemüller, E. (1989). Bases composition of the DNA of mycoplasma-like organisms associated with various plant diseases. Journal of Phytopathology, 127, 177–186.CrossRefGoogle Scholar
  15. Langer, M., & Maixner, M. (2004). Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43(4), 191–199.Google Scholar
  16. Lee, I. M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: Phytopathogenic mollicutes. Annual Review of Microbiology, 54, 221–255.CrossRefPubMedGoogle Scholar
  17. Lee, I. M., Zhao, Y., & Bottner, K. D. (2006). SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes, 20(2), 87–91.CrossRefPubMedGoogle Scholar
  18. Marcone, C. (2014). Molecular biology and pathogenicity of phytoplasmas. Annals of Applied Biology. doi: 10.1111/aab.12151.
  19. Mitrovic, J., Siewert, C., Duduk, B., Hecht, J., Moelling, K., Broecker, F., Beyerlein, P., Büttner, C., Bertaccini, A., & Kube, M. (2014). Generation and analysis of draft sequences of 'Stolbur' phytoplasma from multiple displacement amplification templates. Journal of Molecular Microbiology and Biotechnology. doi: 10.1159/000353904.
  20. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular plant DNA. Nucleic Acids Reseach, 8, 4321–4326.CrossRefGoogle Scholar
  21. Omar, A. F., & Foissac, X. (2012). Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology. doi: 10.1007/s10658-011-9908-x.
  22. Omar, A. F., Emeran, A. A., & Abass, J. M. (2008). Detection of Phytoplasma associated with periwinkle virescence in Egypt. Plant Pathology Journal, 7(1), 92–97.CrossRefGoogle Scholar
  23. Salehi, M., Rasoulpour, R., & Izadpanah, K. (2016). Molecular characterization, vector identification and partial host range determination of phytoplasmas associated with faba bean phyllody in Iran. Crop Protection. doi: 10.1016/j.cropro.2016.06.016.
  24. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.Google Scholar
  25. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Urwin, R., & Maiden, M. C. J. (2003). Multi-locus sequence typing: A tool for global epidemiology. Trends in Microbiology, 11(10), 479–487.CrossRefPubMedGoogle Scholar
  27. Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.CrossRefPubMedGoogle Scholar
  28. White, D. T., Blackall, L. L., Scott, P. T., & Walsh, K. B. (1998). Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in 'Candidatus Phytoplasma australiense' and a new taxon, 'Candidatus Phytoplasma australasia'. International Journal of Systematic Bacteriology, 48, 941–951.CrossRefPubMedGoogle Scholar
  29. Yang, I. L., & Wu, S. Y. (1990). The latent period of peanut witches' broom agent in the vector Orosius orientalis. Journal of Agricultural Research of China, 39(3), 204–207.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Yasmen El-Sisi
    • 1
  • Ayman F. Omar
    • 1
  • Samir A. Sidaros
    • 1
  • Mohsen M. Elsharkawy
    • 1
  • Xavier Foissac
    • 2
  1. 1.Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory, Faculty of AgricultureKafrelsheikh UniversityKafrelsheikhEgypt
  2. 2.UMR1332 Biologie du Fruit et Pathologie, INRAUniversité de BordeauxVillenave d’OrnonFrance

Personalised recommendations