Advertisement

European Journal of Plant Pathology

, Volume 150, Issue 1, pp 205–212 | Cite as

Field survey of ranunculus mild mosaic virus, tomato spotted wilt virus and cucumber mosaic virus infections in Ranunculus asiaticus L. in Japan by newly developed multiplex RT-PCR

  • Saki Hayahi
  • Yosuke Matsushita
  • Yoshiaki Kanno
  • Yoshiyuki Kushima
  • Satoshi Teramoto
  • Minoru TakeshitaEmail author
Article

Abstract

Viral symptoms are frequently observed in production fields of ranunculus (Ranunculus asiaticus L.) in Japan. Based on incidence of diseases caused by a large number of ranunculus-infective viruses, ranunculus mild mosaic virus (RanMMV), tomato spotted wilt virus (TSWV) and cucumber mosaic virus (CMV) infections were the focus of an epidemiological field survey in Japan. To efficiently investigate the incidence and distribution of the three viruses, we first developed a new multiplex reverse transcription-polymerase chain reaction method that enables simultaneous detection of RanMMV, TSWV, and CMV in ranunculus. A field survey of virus infections in ranunculus production fields in Tohoku and Kyushu regions revealed that the infection rate of RanMMV was much higher than that of the other viruses in all fields sampled. Interestingly, the infection rate of RanMMV showed an increasing trend in proportion to the number of vegetative propagation cycles of ranunculus, implying virus transmission by aphids. Taken together, this method was proven to be effective for simultaneous detection of RanMMV, TSWV and CMV in ranunculus plants, and RanMMV was recognized as one of the most prevalent plant viruses in ranunculus fields in Japan.

Keywords

Ranunculus asiaticus L. Ranunculus mild mosaic virus Tomato spotted wilt virus Cucumber mosaic virus 

Notes

Acknowledgements

We thank Dr. K. Nakamura for critical reading of this manuscript, and Mr. Y. Yoshida, Ms. E. Kodama, Ms. T. Kitamura, and Ms. M. Nagatomo for preparing the experimental materials. This study was supported by a Grant-in-Aid for “Research and development projects for application in promoting new policy of agriculture, forestry and fisheries (25075c)” from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

Compliance with ethical standards

Conflict of interest

None

References

  1. Asano, S., Matsushita, Y., Hirayama, Y., & Naka, T. (2015). Simultaneous detection of tomato spotted wilt virus, dahlia mosaic virus and chrysanthemum stunt viroid by multiplex RT-PCR in dahlias and their distribution in Japanese dahlias. Letters in Applied Microbiology, 61, 113–120.CrossRefGoogle Scholar
  2. Bellardi, M. G., Bertaccini, A., & Marini, F. (1988). A PVY isolate infecting Ranunculus. Phytopathologia Mediterranea, 27, 157–162.Google Scholar
  3. Ciuffo, M., Testa, M., Lenzi, R., & Turina, M. (2011). Ranunculus latent virus: A strain of Artichoke latent virus or a new macluravirus infecting artichoke? Archives of Virology, 156, 1053–1057.CrossRefGoogle Scholar
  4. Kamenetsky, R., Peterson, R. L., Melville, L. H., Machado, C. F., & Bewley, J. D. (2005). Seasonal adaptations of the tuberous roots of Ranunculus asiaticus to and resurrection by changes in cell structure and protein content. New Phytologist, 166, 193–204.CrossRefGoogle Scholar
  5. Kawano, A., & Kanno, Y. (2004). Survey of virus diseases on ranunculus (Ranunculus asiaticus L.) in Miyazaki prefecture and development of the serologic identification method. Plant Protection, 60, 668–672 (In Japanese).Google Scholar
  6. Liu, S., He, X., Park, G., Josefsson, C., & Perry, K. L. (2002). A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. Journal of Virology, 76, 9756–9762.CrossRefGoogle Scholar
  7. Minutolo, M., Sorrentino, R., Masenga, V., & Alioto, D. (2016). First report of Broad bean wilt virus 2 and Ranunculus mild mosaic virus in Ranunculus asiaticus in southern Italy. Plant Disease, 100, 235.CrossRefGoogle Scholar
  8. Murakami, K., & Furuichi, T. (2001). Establishment of shoot apex culture methods and proliferation culture methods of ranunculus. Bulletin of the Kagawa Prefecture Agricultural Experiment Station, 54, 33–40 (In Japanese with English Summary).Google Scholar
  9. Murakami, K., & Ishikawa, K. (2009). Detection of virus infected Ranunculus asiaticus using RT-PCR method. Journal of the Japanese Society for Horticultural Science, 8, 317 (In Japanese).Google Scholar
  10. Nakamura, K., Nagatomo, Y., & Gunji, T. (2014). Effects of propagation temperature on root formation of cuttings and acceleration of subsequent growth and tuberization of Ranunculus asiaticus L. Horticultural Research (Japan), 13, 113–117 (In Japanese with English Abstract).CrossRefGoogle Scholar
  11. Nagatomo, Y., Nakamura, K., Honda, Y., & Gunji, S. (2013). Effects of different terms of seed cold storage on growth and flowering in Ranunculus asiaticus L. Horticultural Research (JAPAN), 12(Suppl. 2), 236 (In Japanese).Google Scholar
  12. Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A., Fletcher, J., Chen, J., Gera, A., & Gibbs, A. (2002). Molecular evolution of Turnip mosaic virus: Evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83, 1511–1521.CrossRefGoogle Scholar
  13. Okuda, M., Sakai, J., & Hanada, K. (2001). Comparison of the nucleocapsid genes and the 3’ non-transcriptional regions of the S RNA among Tomato spotted wilt virus isolates from Kyushu. Kyushu Plant Protection Research, 47, 21–24 (In Japanese).CrossRefGoogle Scholar
  14. van Oosten, H. J. (1970). Herbaceous host plants for the sharka (plum pox) virus. Netherlands Journal of Plant Pathology, 76, 253–260.CrossRefGoogle Scholar
  15. Palukaitis, P., & García-Arenal, F. (2003). Cucumoviruses. Advances in Virus Research, 62, 241–323.CrossRefGoogle Scholar
  16. Parrella, G., Gongnalons, K., Gebre-Selassie, C., & Marchoux, G. (2003). An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology, 85, 227–264.Google Scholar
  17. Sagae, T., Ono, K., Sato, H., Fukase, E., Yokokawa, S., & Oyamada, M. (1989). Cultivation methods using seed grown tuberous roots on Rununculus asiaticus L.. 1. Tuberous roots production. Tohoku Agric. Res., 42, 297–298 (In Japanese).Google Scholar
  18. Song, A., You, Y., Chen, F., Li, P., Jiang, J., & Chen, S. (2012). A multiplex RT-PCR for rapid and simultaneous detection of viruses and viroids in chrysanthemum. Letters in Applied Microbiology, 56, 8–13.CrossRefGoogle Scholar
  19. Suzuki, M., Kuwata, S., Kataoka, J., Masuta, C., Nitta, N., & Takanami, Y. (1991). Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology, 183, 106–113.CrossRefGoogle Scholar
  20. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight choice. Nucleic Acids Research, 22, 4673–4680.CrossRefGoogle Scholar
  21. Turina, M., Ciuffo, M., Lenzi, R., Rostagno, L., Mela, L., Derin, E., & Palmano, S. (2006). Characterization of four viral species belonging to the family Potyviridae isolated from Ranunculus asiaticus. Phytopathology, 96, 560–566.CrossRefGoogle Scholar
  22. Turina, M., Kormelink, R., & Resende, R. O. (2016). Resistance to tospoviruses in vegetable crops: Epidemiological and molecular aspects. Annual Review of Phytopathology, 54, 347–371.CrossRefGoogle Scholar
  23. Ushiyama, T., Hanada, K., Honda, Y., Aono, N., & Kameyama, M. (1989). Some viruses isolated from summer phlox, ranunculus and petunia plants. Bulletin of the Kanagawa Horticultural Experimental Station, 38, 43–49 (In Japanese with English Summary).Google Scholar
  24. Vaira, A. M., Milne, R. G., Accotto, G. P., Luisoni, E., Masenga, V., & Lisa, V. (1997). Partial characterization of a new virus from ranunculus with a divided RNA genome and circular supercoiled thread-like particles. Archives of Virology, 142, 2131–2146.CrossRefGoogle Scholar
  25. Whitfield, A. E., Campbell, L. R., Sherwood, J. L., & Ullman, D. E. (2003). Tissue blot immunoassay for detection of Tomato spotted wilt virus in Ranunculus asiaticus and other ornamentals. Plant Disease, 87, 618–622.CrossRefGoogle Scholar
  26. Wilson, C. R. (1998). Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms. Plant Pathology, 47, 171–176.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Saki Hayahi
    • 1
    • 2
  • Yosuke Matsushita
    • 3
  • Yoshiaki Kanno
    • 4
  • Yoshiyuki Kushima
    • 1
  • Satoshi Teramoto
    • 1
  • Minoru Takeshita
    • 5
    Email author
  1. 1.Miyazaki Agricultural Research InstituteMiyazakiJapan
  2. 2.Nishiusuki Branch Office Miyazaki Prefectural GovernmentMiyazakiJapan
  3. 3.Institute of Vegetable and Floriculture Science, NAROIbarakiJapan
  4. 4.Minami Kyushu UniversityMiyazakiJapan
  5. 5.University of MiyazakiMiyazakiJapan

Personalised recommendations