Advertisement

European Journal of Plant Pathology

, Volume 150, Issue 1, pp 49–56 | Cite as

Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis

  • Paulo Cesar Pazdiora
  • Keilor da Rosa Dorneles
  • Carlos Alberto Forcelini
  • Emerson Medeiros Del Ponte
  • Leandro José DallagnolEmail author
Article

Abstract

Tan spot caused by Pyrenophora tritici-repentis is the main foliar diseases of wheat in Brazil. The effect of silicon (Si) on the components of resistance of a susceptible (Fundacep Horizonte) and a moderately resistant (Quartzo) wheat cultivar was studied in a controlled environment. Silicon was supplied as calcium silicate in the soil 30 days before sowing. At the booting stage, a conidial suspension of the fungus was sprayed onto the flag leaves of potted plants, which were incubated under moist conditions for 48 h. Afterwards, inoculated leaves were assessed for: incubation period (IP), infection efficiency (IE), area under lesion size curve (AULSC), lesion size (LS), severity (SEV) and area under severity curve (AUSC). Foliar Si concentrations were quantified at the end of the evaluations. Si supply to plants increased leaf Si concentration in 233% for Fundacep Horizonte (from 4.8 to 16.0 g kg−1 of dry matter) and 211% for Quartzo (from 5.3 to 16.5 g kg−1 of dry matter). In the Si + treatments, IP was longer by 24 and 17 h, IE declined by 53.5 and 65.5%, LS (at 264 h after inoculation) by 4.6 mm (from 9.5 to 4.9 mm) and 5.9 mm (from 8.2 to 2.3 mm), and SEV by 53% (from 54.4 to 18.8%) and 88% (from 47.7 to 5.5%) respectively, for the Fundacep Horizonte and Quartzo cultivars. The Si x cultivar interaction was not significant for AULSC and AUSC, and these variables were reduced by 55.8 and 80.8%, respectively, in plants supplied with Si. In conclusion, Si enhanced the resistance of wheat plants to tan spot development by affecting several resistance components, regardless of the resistance level of the cultivar. However, the greatest reduction in tan spot development by Si supply was observed when using a moderately resistant cultivar.

Keywords

Dreshslera tritici-repentis Triticum aestivum Calcium silicate Epidemiology Tan spot 

Notes

Acknowledgments

P. C. Pazdiora and K. R. Dorneles received scholarships from Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). L. J. Dallagnol and E. M. Del Ponte are supported by fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This research was supported by a grant from CNPq (476852/2012-9).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

References

  1. Andrie, R. A., Pandelova, L., & Ciuffetti, L. A. (2007). A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification. Phytopathology, 97(6), 694–701.CrossRefGoogle Scholar
  2. Andrie, R. M., Schoch, C. L., Hedges, R., Spatafora, J. W., & Ciuffetti, L. M. (2008). Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of sister-species Pyrenophora bromi and other members of the Ascomycota. Fungal Genetics and Biology, 45(3), 363–377.CrossRefGoogle Scholar
  3. Bankina, B., Gaile, Z., Balodis, O., Bimsteine, G., Katamadze, M., Kreita, D., Paura, L., & Priekule, I. (2014). Harmful winter wheat diseases and possibilities for their integrated control in Latvia. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 64(7), 615–622.Google Scholar
  4. Bélanger, R. R., Benhamou, N., & Menzies, J. G. (2003). Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. Sp tritici). Phytopathology, 93(4), 402–412.CrossRefGoogle Scholar
  5. Berger, R. D., Bergamin Filho, A., & Amorim, L. (1997). Lesion expansion as an epidemic component. Phytopathology, 87(10), 1005–1013.CrossRefGoogle Scholar
  6. Bockus, W. W., & Claassen, M. M. (1992). Effects of crop-rotation and residue management-practices on severity of tan spot of winter-wheat. Plant Disease, 76(6), 633–636.CrossRefGoogle Scholar
  7. Bouktila, D., Khalfallah, Y., Habachi-Houimli, Y., Mezghani-Khemakhem, M., Makni, M., & Makni, H. (2014). Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Molecular Genetics and Genomics, 290(1), 257–271.CrossRefGoogle Scholar
  8. Cacique, I. S., Domiciano, G. P., Rodrigues, F. A., & Ribeiro do Vale, F. X. (2012). Silicon and manganese on rice resistance to blast. Bragantia, 71(2), 239–244.CrossRefGoogle Scholar
  9. Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J., & Zhu, X. (2008). Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum, 134(2), 324–333.CrossRefGoogle Scholar
  10. Carmona, M. A., Ferrazini, M., & Barreto, D. E. (2006). Tan spot of wheat caused by Drechslera tritici-repentis: detection, transmission, and control in wheat seed. Cereal Research Communications, 34(2–3), 1043–1049.CrossRefGoogle Scholar
  11. Dallagnol, L. J., Rodrigues, F. A., Mielli, M. V. B., Ma, J. F., & Datnoff, L. E. (2009). Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology, 99(1), 116–121.CrossRefGoogle Scholar
  12. Dallagnol, L. J., Rodrigues, F. A., Da Matta, F. M., Mielli, M. V. B., & Pereira, S. C. (2011). Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice-Bipolaris oryzae interaction. Phytopathology, 101(1), 92–104.CrossRefGoogle Scholar
  13. Dallagnol, L. J., Rodrigues, F. A., Tanaka, F. A. O., Amorim, L., & Camargo, L. E. A. (2012). Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology, 61(2), 323–330.CrossRefGoogle Scholar
  14. Domiciano, G. P., Rodrigues, F. A., Vale, F. X. R., Xavier Filha, M. S., Moreira, W. R., Lage Andrade, C. C., & Pereira, S. C. (2010). Wheat resistance to spot blotch potentiated by silicon. Journal of Phytopathology, 158(5), 334–343.CrossRefGoogle Scholar
  15. Domiciano, G. P., Rodrigues, F. A., Guerra, A. M. N., & Vale, F. X. R. (2013). Infection process of Bipolaris sorokiniana on wheat leaves is affected by silicon. Tropical Plant Pathology, 38(3), 258–263.CrossRefGoogle Scholar
  16. Epstein, E. (2009). Silicon: Its manifold roles in plants. Annals of Applied Biology, 155(2), 155–160.CrossRefGoogle Scholar
  17. Gremillion, S. K., Culbreath, A. K., Gorbet, D. W., Mullinix Jr., B. G., Pittman, R. N., Stevenson, K. L., Todd, J. W., Escobar, R. E., & Condori, M. M. (2011). Field evaluations of leaf spot resistance and yield in peanut genotypes in the United States and Bolivia. Plant Disease, 95(3), 263–268.CrossRefGoogle Scholar
  18. Güevel, M. H., Menzies, J. G., & Bélanger, R. R. (2007). Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology, 119(4), 429–436.CrossRefGoogle Scholar
  19. Hayasaka, T., Fujii, H., & Ishiguro, K. (2008). The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology, 98(9), 1038–1044.CrossRefGoogle Scholar
  20. Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027–1046.CrossRefGoogle Scholar
  21. Keane, P. J., & dan Kerr, A. (1997). Factors affecting disease development. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogen and plant disease (pp. 287–298). Armidale: Rockvale Publications.Google Scholar
  22. Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92(10), 1095–1103.CrossRefGoogle Scholar
  23. Korndörfer, G., Pereira, H., Nolla, A. (2004). Análise de silício: solo, planta e fertilizante, 2nd edn. Uberlândia: Universidade Federal de Uberlândia.Google Scholar
  24. Large, E. C. (1954). Growth stages in cereals - illustration of the feekes scale. Plant Pathology, 3(4), 128–129.CrossRefGoogle Scholar
  25. Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11–18.CrossRefGoogle Scholar
  26. Mulbah, Q. S., Shimelis, H. A., & Laing, M. D. (2015). Combining ability and gene action of three components of horizontal resistance against rice blast. Euphytica, 206(3), 805–814.CrossRefGoogle Scholar
  27. Néri, A. (2013). Reunião da comissão brasileira de pesquisa de trigo e triticale: informações técnicas para trigo e triticale – safra 2013. Londrina: Instituto Agronômico do Paraná.Google Scholar
  28. Parlevliet, J. E. (1979). Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology, 17, 203–222.CrossRefGoogle Scholar
  29. Rafi, M. M., & Epstein, E. (1999). Silicon absorption by wheat (Triticum aestivum L). Plant and Soil, 211(2), 223–230.CrossRefGoogle Scholar
  30. Ranzi, C., & Forcelini, C. A. (2013). Curative sprays of fungicides and their effect on lesion expansion of the wheat tan spot. Ciencia Rural, 43(9), 1576–1581.CrossRefGoogle Scholar
  31. Rees, R. G., & Platz, G. J. (1980). The epidemiology of yellow spot of wheat in southern Queensland. Australian Journal of Agricultural Research, 31(2), 259–267.CrossRefGoogle Scholar
  32. Rees, R. G., & Platz, G. J. (1983). Effects of yellow spot on wheat - comparison of epidemics at different stages of crop development. Australian Journal of Agricultural Research, 34(1), 39–46.Google Scholar
  33. Reis, E. M., & Casa, R. T. (1996). Doenças do trigo VI - mancha amarela da folha. São Paulo: Bayer S.A.Google Scholar
  34. Reis, E. M., & Casa, R. T. (2007). Doenças dos cereais de inverno – diagnose, epidemiologia e controle. Lages: Graphel.Google Scholar
  35. Resende, R. S., Rodrigues, F. A., Soares, J. M., & Casela, C. R. (2009). Influence of silicon on some components of resistance to anthracnose in susceptible and resistant sorghum lines. European Journal of Plant Pathology, 124(3), 533–541.CrossRefGoogle Scholar
  36. Rezende, D. C., Rodrigues, F. A., Carre-Missio, V., Schurt, D. A., Kawamura, I. K., & Korndorfer, G. H. (2009). Effect of root and foliar applications of silicon on brown spot development in rice. Australasian Plant Pathology, 38(1), 67–73.CrossRefGoogle Scholar
  37. Rodrigues, F. A., Vale, F. X. R., Datnoff, L. E., Prabhu, A. S., & Korndorfer, G. H. (2003). Effect of rice growth stages and silicon on sheath blight development. Phytopathology, 93(3), 256–261.CrossRefGoogle Scholar
  38. Rodrigues, F. A., Jurick, W. M., Datnoff, L. E., Jones, J. B., & Rollins, J. A. (2005). Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 66(4), 144–159.CrossRefGoogle Scholar
  39. Rodrigues, F. A., Dallagnol, L. J., Duarte, H. S. S., & Datnoff, L. E. (2015a). Silicon control of foliar diseases in monocots and dicots. In F. A. Rodrigues & L. E. Datnoff (Eds.), Silicon and plant diseases (pp. 67–108). New York: Springer.CrossRefGoogle Scholar
  40. Rodrigues, F. A., Resende, R. S., Dallagnol, L. J., & Datnoff, L. E. (2015b). Silicon potentiates host defense mechanisms against infection by plant pathogens. In F. A. Rodrigues & L. E. Datnoff (Eds.), Silicon and plant diseases (pp. 109–138). New York: Springer.CrossRefGoogle Scholar
  41. Ronis, A., Semaskiene, R., Dabkevicius, Z., & Liatukas, Z. (2009). Influence of leaf diseases on grain yield and yield components in winter wheat. Journal of Plant Protection Research, 49(2), 151–157.CrossRefGoogle Scholar
  42. Seebold, K. W., Kucharek, T. A., Datnoff, L. E., Correa-Victoria, F. J., & Marchetti, M. A. (2001). The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology, 91(1), 63–69.CrossRefGoogle Scholar
  43. Shaner, G., & Finney, R. E. (1977). Effect of nitrogen-fertilization on expression of slow-mildewing resistance in knox wheat. Phytopathology, 67(8), 1051–1056.CrossRefGoogle Scholar
  44. Takahashi, E., Ma, J. F., & Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 2(2), 99–122.Google Scholar
  45. Vale, F. X. R., Fernandes Filho, E. I., Liberato, J. R. (2003). A software plant disease severity assessment. In: 8th international congress of plant pathology. Anais. Christchurch, New Zealand. p. 105.Google Scholar
  46. Van der Plank, J. E. (1963). Plant diseases: epidemics and control. New York: Academic Press.Google Scholar
  47. Xavier Filha, M. S., Rodrigues, F. A., Domiciano, G. P., Oliveira, H. V., Silveira, P. R., & Moreira, W. R. (2011). Wheat resistance to leaf blast mediated by silicon. Australasian Plant Pathology, 40(1), 28–38.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Paulo Cesar Pazdiora
    • 1
  • Keilor da Rosa Dorneles
    • 1
  • Carlos Alberto Forcelini
    • 2
  • Emerson Medeiros Del Ponte
    • 3
  • Leandro José Dallagnol
    • 1
    Email author
  1. 1.Faculdade de Agronomia Eliseu MacielUniversidade Federal de PelotasPelotasBrazil
  2. 2.Faculdade de Agronomia e Medicina VeterináriaUniversidade de Passo FundoPasso FundoBrazil
  3. 3.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations