European Journal of Plant Pathology

, Volume 149, Issue 4, pp 983–1000 | Cite as

A survey on tomato leaf grey spot in the two main production areas of Argentina led to the isolation of Stemphylium lycopersici representatives which were genetically diverse and differed in their virulence

  • Mario Emilio Ernesto Franco
  • Maria Inés Troncozo
  • Silvina Marianela Yanil López
  • Gustavo Lucentini
  • Rocio Medina
  • Mario Carlos Nazareno Saparrat
  • Lía Blanca Ronco
  • Pedro Alberto BalattiEmail author


Tomato gray leaf spot was first reported in Argentina in 1990. Since then, the disease has not only increased in endemic areas, but also disseminated in other tomato-growing areas. In a survey of plants with typical symptoms of Tomato grey leaf spot disease we isolated 27 Stemphylium representatives from the two main tomato-growing areas of Argentina. Cultural features such as sporulation, conidia morphometry among others revealed high variability between isolates, which was confirmed by Inter Simple Sequence Repeat (ISSR)-PCR technique. A molecular phylogenetic analysis comprising the Internal Transcribed Spacer (ITS) and the glyceraldehyde-3-phosphate dehydrogenase (gpd) gene partial sequences unambiguously identified all isolates as Stemphylium lycopersici. Based on disease severity on detached leaves, isolates were grouped in three categories (high, medium and low virulent). No correlation was found between phenotypic or genotypic characters and the geographical origin of the isolates.


Stemphylium lycopersici Tomato gray leaf spot Morphological variability Genetic diversity Virulence Molecular phylogeny 



This research was partially supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of the Ministro de Ciencia, Tecnología e Innovación Productiva through the projects PICT 2012-2760 (Pedro Alberto Balatti) and PICT 2015-1620 (Mario Carlos Nazareno Saparrat).

Supplementary material

10658_2017_1248_MOESM1_ESM.eps (15.1 mb)
ESM 1 Cultural characteristics of Stemphylium isolates. Pictures were taken from 7-day old cultures grown on homemade or commercial PDA at 25 °C in continuous darkness. (EPS 15464 kb)
10658_2017_1248_MOESM2_ESM.eps (2 mb)
ESM 2 Conidia of Stemphylium isolates CIDEFI-216, CIDEFI-217, CIDEFI-218 and CIDEFI-219. Pictures were taken from 7-day old cultures grown on homemade PDA at 25 °C in continuous darkness. Scale bar = 30 μm. (EPS 2033 kb)
10658_2017_1248_MOESM3_ESM.eps (103 kb)
ESM 3 One single most parsimonious tree of Stemphylium/Pleospora inferred from the concatenated ITS-gpd data set. Sequences of seven representatives of five genera of the order Pleosporales (Alternaria, Bipolaris, Cochliobolus, Pyrenophora and Setosphaeria) were chosen as outgroups. Sequences generated in this study are in bold type letter. Numbers at the nodes represents bootstrap support values as a percentage of 1000 replicates. The scale bar represents the number of nucleotide changes (steps). (EPS 103 kb)


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.CrossRefGoogle Scholar
  2. Al-Amri, K., Al-Sadi, A. M., Al-Shihi, A., Nasehi, A., Al-Mahmooli, I., & Deadman, M. L. (2016). Population structure of Stemphylium lycopersici associated with leaf spot of tomato in a single field. SpringerPlus, 5(1), 1642.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bentes, J. L., & Matsuoka, K. (2005). Histologia da interação Stemphylium solani e tomateiro. Fitopatologia Brasileira, 30, 224–231.CrossRefGoogle Scholar
  4. Blancard, D. (2012). A colour handbookTomato diseases. Identification, biology and control. 2nd ed. London: Manson Publishing Ltd.Google Scholar
  5. Bornet, B., & Branchard, M. (2001). Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter, 19(3), 209–215.CrossRefGoogle Scholar
  6. Câmara, M. P., O’Neill, N. R., & Van Berkum, P. (2002). Phylogeny of Stemphylium spp. based on ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 94(4), 660–672.CrossRefPubMedGoogle Scholar
  7. Chaisrisook, C., Skinner, D. Z., & Stuteville, D. L. (1995). Molecular genetic relationships of five Stemphylium species pathogenic to alfalfa. Sydowia, 47(1), 1–9.Google Scholar
  8. Colombo, M. D. H., & Obregón, V. G. (2008). Primera cita de Stemphylium solani en plantines de pimiento en almácigo en la Provincia de Corrientes. In Congreso Argentino de Fitopatología. 1. 2008 05 28-30, 28-30 de mayo de 2008. Córdoba. AR.Google Scholar
  9. Colombo, M. D. H., Lenscak, M. P., & Ishikawa, A. (2001). Mancha gris del tomate causada por Stemphylium floridanum. Primera cita en Argentina. Reunión de Comunicaciones Científicas y Técnicas. 12. 2001 08 01-03, 1 al 3 de Agosto 2001. Corrientes. AR. Google Scholar
  10. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2015). InfoStat versión 2015l. Córdoba: Universidad Nacional de Córdoba.Google Scholar
  12. Ellis, M. B. (1971). Dematiaceous hyphomycetes (608 p). Kew: Common wealth Mycological Institute.Google Scholar
  13. Ellis, M. B., & Gibson, I. A. S. (1975a). Stemphylium solani. CMI descriptions of pathogenic fungi and bacteria (472).Google Scholar
  14. Ellis, M. B., & Gibson, I. A. S. (1975b). Stemphylium lycopersici. CMI descriptions of pathogenic fungi and bacteria (471).Google Scholar
  15. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47.Google Scholar
  16. FAOSTAT (2016). FAO. Accessed 2016.
  17. Farr D.F., & Rossman, A.Y. (2016) Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. From Accessed 2016.
  18. Farris, J. S., Källersjö, M., Kluge, A. G., & Bult, C. (1994). Testing significance of incongruence. Cladistics, 10(3), 315–319.CrossRefGoogle Scholar
  19. Franco, M. E., López, S., Medina, R., Saparrat, M. C., & Balatti, P. (2015). Draft genome sequence and gene annotation of Stemphylium lycopersici strain CIDEFI-216. Genome Announcements, 3(5), e01069–e01015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Griffith, G. W., Easton, G. L., Detheridge, A., Roderick, K., Edwards, A., Worgan, H. J., Nicholson, J., & Perkins, W. T. (2007). Copper deficiency in potato dextrose agar causes reduced pigmentation in cultures of various fungi. FEMS Microbiology Letters, 276(2), 165–171.CrossRefPubMedGoogle Scholar
  21. Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704.CrossRefPubMedGoogle Scholar
  22. Hannon, C. I., & Weber, G. F. (1955). A leaf spot of tomato caused by Stemphylium floridanum sp. nov. Phytopathology, 45(1), 11–16.Google Scholar
  23. Hawker, L. E. (2016). The physiology of reproduction in fungi. London: Cambridge University Press.Google Scholar
  24. Hong, S. K., Choi, H. W., Lee, Y. K., Shim, H. S., & Lee, S. Y. (2012). Leaf spot and stem rot on Wilford swallowwort caused by Stemphylium lycopersici in Korea. Mycobiology, 40(4), 268–271.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Inderbitzin, P., Harkness, J., Turgeon, B. G., & Berbee, M. L. (2005). Lateral transfer of mating system in Stemphylium. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11390–11395.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Inderbitzin, P., Mehta, Y. R., & Berbee, M. L. (2009). Pleospora species with Stemphylium anamorphs: a four locus phylogeny resolves new lineages yet does not distinguish among species in the Pleospora herbarum clade. Mycologia, 101(3), 329–339.CrossRefPubMedGoogle Scholar
  27. Joly, P. (1962). Recherches sur les genres Alternaria et Stemphylium. III. Action de la lumiere et des ultra-violets. Rev. mycol, 27, 1–16.Google Scholar
  28. Jones, J. B., Jones, J. P., Stall, R. E., & Zitter, T. A. (2014). Compendium of tomato diseases and pests. St. Paul: APS Press.Google Scholar
  29. Kim, B. S., Yu, S. H., Cho, H. J., & Hwang, H. S. (2004). Gray leaf spot in peppers caused by Stemphylium solani and S. lycopersici. The Plant Pathology Journal, 20(2), 85–91.CrossRefGoogle Scholar
  30. Kurose, D., Hoang, L. H., Furuya, N., Takeshita, M., Sato, T., Tsushima, S., & Tsuchiya, K. (2014). Pathogenicity of Stemphylium lycopersici isolated from rotted tobacco seeds on seedlings and leaves. Journal of General Plant Pathology, 80(2), 147–152.CrossRefGoogle Scholar
  31. Kwon, J. H., Jeong, B. R., Yun, J. G., & Lee, S. W. (2007). Leaf spot of Kalanchoe (Kalanchoe blossfeldiana) caused by Stemphylium lycopersici. Research in Plant Disease, 13(2), 122–125.CrossRefGoogle Scholar
  32. Lamari, L. (2002). Assess 2.0: image analysis software for plant disease quantification. St Paul: APS Press.Google Scholar
  33. Leach, C. M., & Aragaki, M. (1970). Effects of temperature on conidium characteristics of Ulocladium chartarum and Stemphylium floridanum. Mycologia, 62(5), 1071–1076.CrossRefGoogle Scholar
  34. Malca, I., & Ullstrup, A. J. (1962). Effects of carbon and nitrogen nutrition on growth and sporulation of two species of Helminthosporium. Bulletin of the Torrey Botanical Club, 240–249.Google Scholar
  35. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40(1), 349–379.CrossRefPubMedGoogle Scholar
  36. Mehta, Y. R. (2001). Genetic diversity among isolates of Stemphylium solani from cotton. Fitopatologia Brasileira, 26(4), 703–709.CrossRefGoogle Scholar
  37. Mehta, Y. R., Mehta, A., & Rosato, Y. B. (2002). ERIC and REP-PCR banding patterns and sequence analysis of the internal transcribed spacer of rDNA of Stemphylium solani isolates from cotton. Current Microbiology, 44(5), 323–328.CrossRefPubMedGoogle Scholar
  38. Nasehi, A., Kadir, J. B., Nasr-Esfahani, M., Abed-Ashtiani, F., Wong, M. Y., Rambe, S. K., & Golkhandan, E. (2014). Analysis of genetic and virulence variability of Stemphylium lycopersici associated with leaf spot of vegetable crops. European Journal of Plant Pathology, 140(2), 261–273.CrossRefGoogle Scholar
  39. Nasehi, A., Kadir, J., Nasr-Esfahani, M., Abed-Ashtiani, F., Golkhandan, E., & Ashkani, S. (2015). Identification of the new pathogen (Stemphylium lycopersici) causing leaf spot on Pepino (Solanum muricatum). Journal of Phytopathology. doi: 10.1111/jph.12431.
  40. Neergaard, P. (1945). Danish species of Alternaria and Stemphylium. Copenhagen: Einar Munksgaard.Google Scholar
  41. Nishi, N., Muta, T., Ito, Y., Nakamura, M., & Tsukiboshi, T. (2009). Ray speck of chrysanthemum caused by Stemphylium lycopersici in Japan. Journal of General Plant Pathology, 75(1), 80–82.CrossRefGoogle Scholar
  42. Ramallo, A. C., Hongn, S. I., Baino, O., Quipildor, L., & Ramallo, J. C. (2005). Stemphylium solani en tomate de invernadero en Tucumán, Argentina. Fitopatologia, 40(1), 17–22.Google Scholar
  43. Snyder, W. C., & Hansen, H. N. (1941). The effect of light on taxonomic characters in Fusarium. Mycologia, 33(6), 580–591.CrossRefGoogle Scholar
  44. Swofford, D. L. (2002). PAUP* version 4.0 b10, Phylogenetic analysis using parsimony (* and other methods). Sunderland: Sinauer.Google Scholar
  45. Sy-Ndir, M., Assigbetse, K. B., Nicole, M., Diop, T. A., & Ba, A. T. (2015). Differentiation of Stemphylium solani isolates using random amplified polymorphic DNA markers. African Journal of Microbiology Research, 9(13), 915–921.CrossRefGoogle Scholar
  46. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641.CrossRefGoogle Scholar
  48. Tomioka, K., & Sato, T. (2011). Fruit rot of sweet pepper caused by Stemphylium lycopersici in Japan. Journal of General Plant Pathology, 77(6), 342–344.CrossRefGoogle Scholar
  49. Tomioka, K., Sato, T., Sasaya, T., & Koganezawa, H. (1997). Leaf spot of kalanchoe caused by Stemphylium lycopersici. Annals of the Phytopathological Society of Japan, 63, 337–340.CrossRefGoogle Scholar
  50. Virtual Colour Systems LTD (2013) Virtual colour atlas. Accessed 2016.
  51. Weber, G. F. (1930). Gray leaf spot of tomato caused by Stemphylium solani, sp. nov. Phytopathology, 20(6), 513–518.Google Scholar
  52. White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pcr Protocols: A Guide to Methods and Applications, 18(1), 315–322.Google Scholar
  53. Williams, C. N. (1959). Spore size in relation to culture conditions. Transactions of the British Mycological Society, 42(2), 213–222.CrossRefGoogle Scholar
  54. Zhu, Y., Pan, J., Qiu, J., & Guan, X. (2008). Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis webber. Brazilian Journal of Microbiology, 39(4), 770–775.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Mario Emilio Ernesto Franco
    • 1
    • 2
  • Maria Inés Troncozo
    • 3
  • Silvina Marianela Yanil López
    • 1
    • 2
  • Gustavo Lucentini
    • 1
    • 4
  • Rocio Medina
    • 1
    • 2
  • Mario Carlos Nazareno Saparrat
    • 2
    • 3
    • 5
  • Lía Blanca Ronco
    • 1
    • 3
  • Pedro Alberto Balatti
    • 1
    • 3
    • 4
    Email author
  1. 1.Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.Comisión de Investigaciones Científicas de la Provincia de Buenos AiresLa PlataArgentina
  5. 5.Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales y Museo-Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. CCT-La Plata-CONICETLa PlataArgentina

Personalised recommendations