Advertisement

European Journal of Plant Pathology

, Volume 149, Issue 2, pp 425–433 | Cite as

Interaction of root colonizing biocontrol agents demonstrates the antagonistic effect against Fusarium oxysporum f. sp. lycopersici on tomato

  • Stuti Patel
  • Meenu SarafEmail author
Article

Abstract

Plant growth promoting Bacillus subtilis MSS9 and Bacillus licheniformis MSS14 were isolated from the tomato rhizosphere. These isolates were capable of inhibiting the fungal pathogen, Fusarium oxysporum f. sp. lycopersici causing fusarium wilt in tomato, tested by dual culture method and by mycolytic enzyme production. The isolates have the capacity to form biofilm on the microtitre plate. Scanning electron microscopy revealed good colonization capacity of Bacillus licheniformis MSS14 on tomato plant root as compared to Bacillus subtilis MSS9, pot experiments were also analyzed to study the effects of both rhizobacterial cultures on pathogen development and plant growth. It was observed that MSS14 reduces the incidence of Fusarium oxysporum f. sp. lycopersici in tomato and there was significant increase in vegetative parameters like root length, shoot length, plant wet weight, dry weight and chlorophyll content after which indicates that the root colonization property of the culture MSS14 helps in enhancing the biocontrol capacity against pathogen than that of MSS9.

Keywords

Biofilm formation Root colonization Fusarium oxysporum f. sp. lycopersici (FOL) Scanning electron microscopy (SEM) 

Notes

Acknowledgements

We are thankful to Department of Microbiology and Biotechnology, Gujarat University to encourage and help us with the required facility and work and British Petroleum International Pvt. Ltd. for financial support.

References

  1. Abdul-Baki, A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13, 630–633.CrossRefGoogle Scholar
  2. Anjaiah, V., Cornelis, P., & Koedam, N. (2003). Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Canadian Journal of Microbiology, 49, 85–91.CrossRefPubMedGoogle Scholar
  3. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato- associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229.CrossRefPubMedGoogle Scholar
  4. Bolwerk, A., Lagopodi, A. L., Wijfjes, A. H., Lamers, G. E., Chin, A. W. T. F., Lugtenberg, B. J., & Bloemberg, G. V. (2003). Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant-Microbe Interactions, 16, 983–993.CrossRefPubMedGoogle Scholar
  5. Chaiharn, M., Chunhaleuchanon, S., & Lumyong, S. (2009). Screening of siderophore producing bacteria as potential biological control agent for fungal rice pathogen in Thailand. World Journal of Microbiology and Biotechnology, 25, 1919–1928.CrossRefGoogle Scholar
  6. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., & Barka, E. A. (2005). Endophytic colonization of Vitisvinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71, 1685–1693.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Davey, M. E., & O’Toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Friedman, L., & Kolter, R. (2004). Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Molecular Microbiology, 51, 675–690.CrossRefPubMedGoogle Scholar
  9. Haggag, W. M., & Timmusk, S. (2008). Colonization of peanut roots by biofilm- forming Paenibacillus Polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology, 104, 961–969.CrossRefPubMedGoogle Scholar
  10. Jha, C. K., & Saraf, M. (2011). Invitro evaluation of indigeneous plant growth promoting rhizobacteria isolated from Jatropha curcas rhizosphere. International Journal of Genetic Engineering and Biotechnology, 2(1), 91–100.Google Scholar
  11. Karimi, K., Amini, J., Harighi, B., & Bahramnejad, B. (2012). Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal of Crop Science, 6, 695–703.Google Scholar
  12. Kloepper, J. W., & Schroth, M. N. (1981). Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and displacement of root microflora. Phytopathology, 71, 1020–1024.CrossRefGoogle Scholar
  13. Kouki, S., Saidi, N., Rajeb, A. N., Brahmi, N., Bellica, A., Fumio, M., Hefiene, A., Jedidi, N., Downer, J., & Ouzari H (2012). Control of Fusarium wilt on tomato caused by Fusarium oxysporum f. sp. Radicis-Lycopersici using mixture of vegetable and Posidonia oceanica compost. Applied and Environmental Soil Science, doi: 10.1155/2012/239639
  14. Latour, X., Corberand, T., Laguerre, G., Allard, F., & Lemanceay, P. (1996). The composition of fluorescent pseudomonad population associated with roots is influenced by plant and soil type. Applied and Environmental Microbiology, 62, 2449–2456.PubMedPubMedCentralGoogle Scholar
  15. Lugtenberg Ben, J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 46–90.Google Scholar
  16. Markovich, N. A., & Kononova, G. L. (2003). Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Applied Biochemistry and Microbiology, 39(4), 341–351.CrossRefGoogle Scholar
  17. Morris, C. E., & Monier, J. M. (2003). The ecological significance of biofilm formation by plant-associated bacteria. Annual Review of Phytopathology, 41, 429–453.CrossRefPubMedGoogle Scholar
  18. O’Toole, G. A. (2011). Microtiter dish biofilm formation assay, JOVE.47, http://www.jove.com., doi: 10.3791/2437
  19. O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.CrossRefPubMedGoogle Scholar
  20. Raaijmakers, J. M., Leeman, M., van Oorschot, M. M. P., van der Siuls, I., Schippers, B., & Bakker, P. A. H. M. (1995). Dose-response relationships of biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology, 85, 1075–1081.CrossRefGoogle Scholar
  21. Roomberg, M. K., & Davis, R. M. (2007). Host range and phylogeny of Fusarium solani f.sp. eumartii from potato and tomato in California. Plant Disease, 91, 585–592.CrossRefGoogle Scholar
  22. Sambrook, J., Fritsch, F. E., & Maniatis, T. A. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  23. Selvakumar, G., Reetha, R., & Thamizhiniyan, P. (2013). The PGPR elicitors of plant defense mechanisms and growth stimulants on tomato (Lycopersicum esculentum Mill.) Botany Research International, 6, 47–55.Google Scholar
  24. Singha, I. M., Kakoty, Y., Unni, B. G., Kalita, M. C., Das, J., Naglot, A., Wann, S. B., & Singh, L. (2011). Control of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. Radicis-Lycopersici using leaf extract of Piper betle L.: a preliminary study. World Journal of Microbiology and Biotechnology. doi: 10.1007/s11274–011–0730-6.Google Scholar
  25. Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. Plant Cell, 2, 755–767.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefPubMedGoogle Scholar
  27. Tank, N., & Saraf, M. (2008). Enhancement of plant growth and decontamination of nickel spiked soil using PGPR. Journal of Basic Microbiology, 49(2), 195–204.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  1. 1.Department of Microbiology, University School of SciencesGujarat UniversityAhmedabadIndia

Personalised recommendations