European Journal of Plant Pathology

, Volume 149, Issue 2, pp 325–336 | Cite as

Identification of pathogenic fungi and preliminary screening for resistance in Jatropha curcas L. germplasm

  • Lissette C. Hernández-Cubero
  • Peter Ampofo
  • Juan M. Montes
  • Ralf T. VoegeleEmail author


Jatropha curcas L. (jatropha) is a perennial undomesticated plant with a high untapped potential for sustainable production of food, biofuels and biomass-based products. The identification of resistance sources in the germplasm is important to develop improved varieties. In order to characterize presence of pathogens in multiple production sites, leaf samples showing symptoms of diseases were collected in Argentina, India, and Cameroon. Samples were used for DNA extraction and species identification through PCR, sequencing and BLAST searches. The identified fungal isolates were inoculated onto healthy plants using the agar block method. Re-isolation from symptomatic plants with subsequent DNA extraction and molecular identification confirmed pathogenicity of six species: Phoma herbarum, Diaporthe phaseolorum, Nigrospora sphaerica, Gibberella moniliformis, Alternaria alternata, and Fusarium sp. The identified pathogens were used to screen for resistance in a set of 20 jatropha genotypes. One genotype showed resistance to P. herbarum, seven to N. sphaerica, five to D. phaseolorum and one to G. moniliformis. Only three genotypes showed resistance to more than one pathogen. The sources of resistance and their respective level need to be validated in field experiments.


Jatropha Pathogens Resistance Breeding 



Special acknowledgement to the Ministry of Science and Technology of Costa Rica (MICITT) and to the Consejo Nacional para Investigaciones Científicas y Tecnológicas (CONICIT), for financial support provided for LCH-C.

Supplementary material

10658_2017_1183_MOESM1_ESM.pdf (133 kb)
Online Resource 1 (PDF 133 kb)
10658_2017_1183_MOESM2_ESM.pdf (101 kb)
Online Resource 2 (PDF 100 kb)


  1. Ahoton, L. E., & Quenum, F. (2012). Floral biology and hybridization potential of nine accessions of physic nut (J. curcas L.) originating from three continents. Tropicultura, 30, 193–198.Google Scholar
  2. Bridge, P. D. (2013). Pragmatic characterization of fungal plant pathogens: some practical examples. Indian Phytopathology, 66, 117–124.Google Scholar
  3. Brittaine, R., Lutaladio, N. (2010). Jatropha: a smallholder bioenergy crop. The potential for pro-poor development. In: Integrated Crop Management Vol. 8 (pp. 2–53). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  4. Contran, N., Chessa, L., Lubino, M., Bellavite, D., Roggero, P. P., & Enne, G. (2013). State-of-the-art of the J. curcas productive chain: from sowing to biodiesel and by-products. Industrial Crops and Products, 42, 202–215.CrossRefGoogle Scholar
  5. Cordier, T., Robin, C., Capdevielle, X., Fabreguettes, O., Desprez-Loustau, M. L., & Vacher, C. (2012). The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytologist, 196, 510–519.CrossRefPubMedGoogle Scholar
  6. Covarelli, L., Stifano, S., Beccari, G., Raggi, L., Lattanzio, V. M. T., & Albertini, E. (2012). Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability. Food Microbiology, 31, 17–24.CrossRefPubMedGoogle Scholar
  7. De Campos Dianese, A., Dianese, J. C., & Dos Santos, J. D. G., Jr. (2010). New records for the Brazilian Cerrado of leaf pathogens on J. curcas. Boletim de Pesquisa e Desenvolvimento-Embrapa Cerrados, 293, 1–13.Google Scholar
  8. Dissanayake, A. J., Liu, M., Zhang, W., Chen, Z., Udayanga, D., Chukeatirote, E., Li, X., Yan, J., & Hyde, K. D. (2015). Morphological and molecular characterization of Diaporthe species associated with grapevine trunk disease in China. Fungal Biology, 119, 283–294.CrossRefPubMedGoogle Scholar
  9. Espinoza-Verduzco, M. D. L. A., Santos-Cervantes, M. E., Fernandez-Herrera, E., Espinoza-Mancillas, M. G., Chavez-Medina, J. A., Bermudez-Alvarez, E. M., Martinez-Ayala, A. L., Mendez-Lozano, J., & Leyva-Lopez, N. E. (2012). First report of Alternaria alternata (Fr.) Keissler causing inflorescence blight in J. curcas in Sinaloa, Mexico. Canadian Journal of Plant Phytopathology, 34, 455–458.CrossRefGoogle Scholar
  10. Francis, G., Oliver, J., & Sujatha, M. (2013). Non-toxic Jatropha plants as a potential multipurpose multi-use oilseed crop. Industrial Crops and Products, 42, 397–401.CrossRefGoogle Scholar
  11. Ginting, C., & Maryono, T. (2009). Physic nut (J. curcas L.) diseases in Lampung province. Biotropia, 16, 45–54.Google Scholar
  12. Gohil, R. H., & Pandya, J. B. (2008). Genetic diversity assessment in physic nut (J. curcas L.). International Journal of Plant Production, 2, 321–326.Google Scholar
  13. Gohil, R. H., & Pandya, J. B. (2009). Genetic evaluation of J. curcas (J. curcas Linn.) genotypes. Journal of Agricultural Research, 47, 221–228.Google Scholar
  14. Grijalba, P., & Ridao, A. C. (2014). Growth rate and pathogenicity of isolates of Diaporthe phaseolorum var. caulivora. Phyton, 83, 325–332.Google Scholar
  15. Hudge, B. V., & Datar, V. V. (2010). Study of incidence and severity of leaf spot disease in J. curcas L. International Journal of Agricultural Sciences, 6, 355–356.Google Scholar
  16. Hunt, R. S. (1997). Relative value of slow-canker growth and bark reactions as resistance responses to white pine blister rust. Canadian Journal of Plant Phytopathology, 19, 352–357.CrossRefGoogle Scholar
  17. Kumar, R., Sinha, A., Singh, S. R., & Kamil, D. (2009). Incidence of a leaf spot disease in J. curcas from Eastern Uttar Pradesh. Journal of Mycology and Plant Pathology, 39, 536–538.Google Scholar
  18. Kumla, J., Suwannarach, N., & Lumyong, S. (2016). Firs report of Phoma leaf spot disease on cherry palm caused by Phoma herbarum in Thailand. Canadian Journal of Plant Pathology, 38, 103–106.CrossRefGoogle Scholar
  19. Kwon, J.-H., Choi, O., Kim, J., & Kwak, Y.-S. (2012). First report of anthracnose disease on J. curcas caused by Colletotrichum gloeosporioides in Korea. Journal of Phytopathology, 160, 255–257.CrossRefGoogle Scholar
  20. Liu, Y. J., Tang, Q., & Fang, L. (2016). First report of Nigrospora sphaerica causing leaf blight on Camellia sinensis in China. Plant Disease, 100, 221.CrossRefGoogle Scholar
  21. Machado, A. R., Pereira, O. L. (2012). Major diseases of the biofuel plant, physic nut (J. curcas). In: Z. Fang (ed), Biodiesel-Feedstocks, Production and Applications. Resource Document. Accessed 13 January 2016.
  22. Makkar, H. P. S., Becker, K., Sporer, F., & Wink, M. (1997). Studies on nutritive potential and toxic constituents of different provenances of J. curcas. Journal of Agriculture and Food Chemistry, 45, 3152–3157.CrossRefGoogle Scholar
  23. Martin, M., Montes, J. M. (2014). Quantitative genetic parameters of agronomic and quality traits in a global germplasm collection reveal excellent breeding perspectives for J. curcas L. GCB Bioenergy. Resource Document. 10.1111/gcbb.12227/full. Accessed 12 Dec 2015.
  24. Mohammadi, A., Nejad, R. F., & Mofrad, N. N. (2012). Fusarium verticillioides from sugarcane, vegetative compatibility groups and pathogenicity. Plant Protection Science, 48, 80–84.Google Scholar
  25. Montes, J. M., Technow, F., Martin, M., & Becker, K. (2014). Genetic diversity in J. curcas L. assessed with SSR and SNP markers. Diversity, 6, 551–566.CrossRefGoogle Scholar
  26. Narayanasamy, P. (2011). Detection of fungal pathogens in plants. Microbial Plant Pathogens-Detection and Disease Diagnosis (pp. 5–199), Netherlands: Springer.Google Scholar
  27. Nasim, G., Khan, S., & Khokar, I. (2012). Molecular polymorphism and phylogenetic relationship of some Alternaria isolates. Pakistan Journal of Botany, 44, 1267–1270.Google Scholar
  28. Neumann, S., & Boland, G. J. (1999). First report of Phoma herbarum and Phoma exigua as pathogens of dandelion in Southern Ontario. Plant Disease, 83, 200.CrossRefGoogle Scholar
  29. Nithiyanantham, S., Siddhuraju, P., & Francis, G. (2012). Potential of J. curcas as a biofuel, animal feed and health products. Journal of the American Oil Chemists' Society, 89, 961–972.CrossRefGoogle Scholar
  30. Pandey, A., Pandey, S., & Awasthi, A. K. (2013). A new host record of Nigrospora sphaerica on Mangifera indica from Jabalpur, India. Journal of Mycology and Plant Pathology, 43, 255–256.Google Scholar
  31. Pereira, O. L., Dutra, D. C., & Dias, L. A. S. (2009). Lasiodiplodia theobromae is the causal agent of a damaging root and collar rot disease on the biofuel plant J. curcas in Brazil. Australasian Plant Disease Notes, 4, 120–123.CrossRefGoogle Scholar
  32. Soylu, S., Dervis, S., & Soylu, E. M. (2011). First report of Nigrospora sphaerica causing leaf spots on Chinese wisteria: a new host of the pathogen. Plant Disease, 95, 219.CrossRefGoogle Scholar
  33. Stewart-Wade, S. M., & Boland, G. J. (2005). Oil emulsions increase efficacy of Phoma herbarum to control dandelion but are phytotoxic. Biocontrol Science and Technology, 15, 671–681.CrossRefGoogle Scholar
  34. Sun, S., Van, K., Kim, M. Y., Min, K. H., Lee, Y. W., & Lee, S. H. (2012). Diaporthe phaseolorum var. caulivora, a causal agent for both stem canker and seed decay on soybean. Plant Pathology Journal, 28, 55–59.CrossRefGoogle Scholar
  35. Vera Castillo, Y. B., Pritchard, H. W., Frija, A., Veettil Chellattan, P., Cuevas Sanchez, J. A., Van Damme, P., & Van Huylenbroeck, G. (2014). Production viability and farmers’ willingness to adopt J. curcas L. as a biofuel source in traditional agroecosystems in Totonacapan, Mexico. Agricultural Systems, 125, 42–49.CrossRefGoogle Scholar
  36. Verma, O. P., & Gupta, R. B. L. (2007). A new host for Nigrospora sphaerica causing leaf spots on Glycyrrhiza glabra. New Disease Reports, 16, 35.Google Scholar
  37. Voegele, R. T., & Schmid, A. (2011). RT real-time PCR-based quantification of Uromyces fabae in planta. FEMS Microbiology Letters, 322, 131–137.CrossRefPubMedGoogle Scholar
  38. Wang, H., Hwang, S. F., Chang, K. F., Gossen, B. D., Turnbull, G. D., & Howard, R. J. (2003). Assessing resistance to spring black stem and leaf spot of alfalfa caused by Phoma spp. Canadian Journal of Plant Science, 84, 311–317.CrossRefGoogle Scholar
  39. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. H. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York, NY, USA: Academic Press, Inc.Google Scholar
  40. Wright, E. R., Folgado, M., Rivera, M. C., Crelier, A., & Vasquez, P. (2008). Nigrospora sphaerica causing leaf spot and twig and shoot blight on blueberry: a new host of the pathogen. Plant Disease, 92, 171.CrossRefGoogle Scholar
  41. Wu, Y., Ou, G., & Yu, J. (2011). First report of Nectria haematococca causing root rot disease of physic nut (J. curcas) in China. Australasian Plant Disease Notes, 6, 39–42.CrossRefGoogle Scholar
  42. Yang, S. M., Dowler, W. M., & Johnson, D. R. (1991). Comparison of methods for selecting fungi pathogenic to leafy spurge. Plant Disease, 75, 1201–1203.CrossRefGoogle Scholar
  43. Yuan, G., Zhang, Z., Xiang, K., Shen, Y., Du, J., Lin, H., Liu, L., Zhao, M., & Pan, G. (2013). Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium verticillioides infection. Plant Molecular Biology Reporter, 31, 925–935.CrossRefGoogle Scholar
  44. Zarafi, A. B., & Abdulkadir, I. D. (2012). Identification and host range of causal agent of dieback disease on J. curcas. Archives of Phytopathology and Plant Protection, 45, 1096–1100.CrossRefGoogle Scholar
  45. Zarafi, A. B., & Abdulkadir, I. D. (2013). The incidence and severity of J. curcas dieback disease in Zaria, Nigeria. Archives of Phytopathology and Plant Protection, 46, 952–961.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Lissette C. Hernández-Cubero
    • 1
    • 2
  • Peter Ampofo
    • 2
  • Juan M. Montes
    • 1
  • Ralf T. Voegele
    • 2
    Email author
  1. 1.JatroSolutionsStuttgartGermany
  2. 2.Department of Phytopathology, Faculty of Agricultural Sciences, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany

Personalised recommendations