Advertisement

European Journal of Plant Pathology

, Volume 148, Issue 4, pp 839–851 | Cite as

Characterization of Dickeya and Pectobacterium strains obtained from diseased potato plants in different climatic conditions of Norway and Poland

  • Merete Wiken DeesEmail author
  • Renata Lebecka
  • Juliana Irina Spies Perminow
  • Robert Czajkowski
  • Anna Grupa
  • Agata Motyka
  • Sabina Zoledowska
  • Jadwiga Śliwka
  • Ewa Lojkowska
  • May Bente Brurberg
Article

Abstract

Soft rot and blackleg of potato caused by pectinolytic bacteria lead to severe economic losses in potato production worldwide. To investigate the species composition of bacteria causing soft rot and black leg of potato in Norway and Poland, bacteria were isolated from potato tubers and stems. Forty-one Norwegian strains and 42 Polish strains that formed cavities on pectate medium were selected for potato tuber maceration assays and sequencing of three housekeeping genes (dnaX, icdA and mdh) for species identification and phylogenetic analysis. The distribution of the species causing soft rot and blackleg in Norway and Poland differed: we have demonstrated that mainly P. atrosepticum and P. c. subsp. carotovorum are the causal agents of soft rot and blackleg of potatoes in Norway, while P. wasabiae was identified as one of the most important soft rot pathogens in Poland. In contrast to the other European countries, D. solani seem not to be a major pathogen of potato in Norway and Poland. The Norwegian and Polish P. c. subsp. carotovorum and P. wasabiae strains did not cluster with type strains of the respective species in the phylogenetic analysis, which underlines the taxonomic complexity of the genus Pectobacterium. No correlation between the country of origin and clustering of the strains was observed. All strains tested in this study were able to macerate potato tissue. The ability to macerate potato tissue was significantly greater for the P. c. subsp. carotovorum and Dickeya spp., compared to P. atrosepticum and P. wasabiae.

Keywords

Black leg Pectinolytic bacteria Phylogeny Soft rot Solanum tuberosum 

Notes

Acknowledgments

We are grateful to E. S. Riiser and M. Skogen for assistance in sample preparation and performing PCR; I. L Akselsen and E. Borowski for performing fatty acid analysis; and the Polish Inspectorate of Plant Health and Seed Inspection Service for providing blackleg and soft rot affected plants. The research leading to these results has received funding from the Polish-Norwegian Research Program operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project POTPAT Contract No Pol-Nor/202448/28/2013.

References

  1. Brady, C. L., Cleenwerck, I., Denman, S., Venter, S. N., Rodriguez-Palenzuela, P., Coutinho, T. A., & De Vos, P. (2012). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. International Journal of Systematic and Evolutionary Microbiology, 62, 1592–1602.CrossRefPubMedGoogle Scholar
  2. Charkowski, A. O. (2015). Biology and control of Pectobacterium in potato. American Journal of Potato Research, 92, 223–229.CrossRefGoogle Scholar
  3. Czajkowski, R., Pérombelon, M. C. M., van Veen, J. A., & van der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60, 999–1013.CrossRefGoogle Scholar
  4. Darrasse, A., Kotoujansky, A., & Bertheau, Y. (1994). Isolation by genomic subtraction of DNA probes specific for Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 60, 298–306.PubMedPubMedCentralGoogle Scholar
  5. De Boer, S. H., Li, X., & Ward, L. J. (2012). Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology, 102, 937–947.CrossRefPubMedGoogle Scholar
  6. Degefu, Y., Potrykus, M., Golanowska, M., Virtanen, E., & Lojkowska, E. (2013). A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology, 162, 231–241.CrossRefGoogle Scholar
  7. Duarte, V., De Boer, S. H., Ward, L. J., & de Oliveira, A. M. R. (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. Journal of Applied Microbiology, 96, 535–545.CrossRefPubMedGoogle Scholar
  8. Dzwonkowski, W. (2016). Rynek ziemniaków w Europie i na świecie. In: Analizy rynkowe. Rynek ziemniaka: stan i perspektywy. IERiGZ-PIB, ARR, MRiRW, Warszawa, 43, 8–12.Google Scholar
  9. Gallois, A., Samson, R., Ageron, E., & Grimont, P. A. D. (1992). Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). International Journal of Systematic Bacteriology, 42, 582–588.CrossRefGoogle Scholar
  10. Gardan, L., Gouy, C., Christen, R., & Samson, R. (2003). Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp nov., Pectobacterium betavasculorum sp nov and Pectobacterium wasabiae sp nov. International Journal of Systematic and Evolutionary Microbiology, 53, 381–391.CrossRefPubMedGoogle Scholar
  11. Gill, E. D., Schaerer, S., & Dupuis, B. (2014). Factors impacting blackleg development caused by Dickeya spp. in the field. European Journal of Plant Pathology, 140, 317–327.CrossRefGoogle Scholar
  12. Hankin, L., & Anagnostakis, S. L. (1977). Solid media containing carboxymethylcellulose to detect CX cellulose activity of micro-organisms. Journal of General Microbiology, 98, 109–115.CrossRefPubMedGoogle Scholar
  13. Hélias, V., Hamon, P., Huchet, E., Wolf, J. V. D., & Andrivon, D. (2012). Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathology, 61, 339–345.CrossRefGoogle Scholar
  14. Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature reviews. Microbiology, 8, 634–644.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim, H. S., Ma, B., Perna, N. T., & Charkowski, A. O. (2009). Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Applied and Environmental Microbiology, 75, 4539–4549.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Latour, X., Diallo, S., Chevalier, S., Morin, D., Smadja, B., Burini, J. F., Haras, D., & Orange, N. (2007). Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum. Applied and Environmental Microbiology, 73, 4078–4081.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laurila, J., Ahola, V., Lehtinen, A., Joutsjoki, T., Hannukkala, A., Rahkonen, A., & Pirhonen, M. (2008). Characterization of Dickeya strains isolated from potato and river water samples in Finland. European Journal of Plant Pathology, 122, 213–225.CrossRefGoogle Scholar
  18. Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A., & Charkowski, A. O. (2007). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology, 97, 1150–1163.CrossRefPubMedGoogle Scholar
  19. McCarter-Zorner, N. J., Franc, G. D., Harrison, M. D., Michaud, J. E., Quinn, C. E., Sells, I. A., & Graham, D. C. (1984). Soft rot Erwinia bacteria in surface and underground waters in southern Scotland and in Colorado, United States. Journal of Applied Bacteriology, 57, 95–105.CrossRefGoogle Scholar
  20. McCarter-Zorner, N. J., Harrison, M. D., Franc, G. D., Quinn, C. E., Sells, I. A., & Graham, D. C. (1985). Soft rot Erwinia bacteria in the rhizosphere of weeds and crop plants in Colorado, United States and Scotland. Journal of Applied Bacteriology, 59, 357–368.CrossRefGoogle Scholar
  21. Nabhan, S., Wydra, K., Linde, M., & Debener, T. (2012). The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathology, 61, 498–508.CrossRefGoogle Scholar
  22. Nykyri, J., Niemi, O., Koskinen, P., Nokso-Koivisto, J., Pasanen, M., Broberg, M., Plyusnin, I., Toronen, P., Holm, L., Pirhonen, M., & Palva, E. T. (2012). Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathogens, 8, e1003013.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pasanen, M., Laurila, J., Brader, G., Palva, E. T., Ahola, V., van der Wolf, J., Hannukkala, A., & Pirhonen, M. (2013). Characterisation of Pectobacterium wasabiae and Pectobacterium carotovorum subsp. carotovorum isolates from diseased potato plants in Finland. Annals of Applied Biology, 163, 403–419.CrossRefGoogle Scholar
  24. Pérombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.CrossRefGoogle Scholar
  25. Pitman, A. R., Harrow, S. A., & Visnovsky, S. B. (2010). Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Plant Pathology, 126, 423–435.CrossRefGoogle Scholar
  26. Potrykus, M., Sledz, W., Golanowska, M., Slawiak, M., Binek, A., Motyka, A., Zoledowska, S., Czajkowski, R., & Lojkowska, E. (2014). Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Annals of Applied Biology, 165, 474–487.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Potrykus, M., Golanowska, M., Sledz, W., Zoledowska, S., Motyka, A., Kolodziejska, A., Butrymowicz, J., & Lojkowska, E. (2016). Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Disease, 100, 408–417.CrossRefGoogle Scholar
  28. Pritchard, L., Humphris, S., Saddler, G. S., Parkinson, N. M., Bertrand, V., Elphinstone, J. G., & Toth, I. K. (2013). Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathology, 62, 587–596.CrossRefGoogle Scholar
  29. Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W., & Gardan, L. (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 1415–1427.CrossRefPubMedGoogle Scholar
  30. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note, 101 Google Scholar
  31. Slawiak, M., van Beckhoven, J. R. C. M., Speksnijder, A. G. C. L., Czajkowski, R., Grabe, G., & van der Wolf, J. M. (2009a). Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. European Journal of Plant Pathology, 125, 245–261.CrossRefGoogle Scholar
  32. Slawiak, M., Lojkowska, E., & van der Wolf, J. M. (2009b). First report of bacterial soft rot on potato caused by Dickeya sp (syn. Erwinia chrysanthemi) in Poland. Plant Pathology, 58, 794–794.CrossRefGoogle Scholar
  33. Stypa, I., & Urbanowicz, J. (2016) Struktura odmianowa nasiennictwa ziemniaka w Polsce w 2015 roku. Ziemniak Polski, 1, 4–9.Google Scholar
  34. Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., Tsror, L., & Elphinstone, J. G. (2011). Dickeya species: an emerging problem for potato production in Europe. Plant Pathology, 60, 385–399.CrossRefGoogle Scholar
  35. van der Wolf, J. M., & De Boer, S. H. (2007). Bacterial pathogens of potato. Potato Biology and Biotechnology, 619-641.Google Scholar
  36. van der Wolf, J. M., Nijhuis, E. H., Kowalewska, M. J., Saddler, G. S., Parkinson, N., Elphinstone, J. G., Pritchard, L., Toth, I. K., Lojkowska, E., Potrykus, M., Waleron, M., de Vos, P., Cleenwerck, I., Pirhonen, M., Garlant, L., Helias, V., Pothier, J. F., Pfluger, V., Duffy, B., Tsror, L., & Manulis, S. (2014). Dickeya solani sp nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology, 64, 768–774.CrossRefPubMedGoogle Scholar
  37. Waleron, M., Waleron, K., & Lojkowska, E. (2013). Occurrence of Pectobacterium wasabiae in potato field samples. European Journal of Plant Pathology, 137, 149–158.CrossRefGoogle Scholar
  38. Waleron, M., Waleron, K., & Lojkowska, E. (2015). First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot on potato and other vegetables in Poland. Plant Disease, 99, 1271–1271.CrossRefGoogle Scholar
  39. Woodward, E. J., & Robinson, K. (1990). An improved formulation and method of preparation of crystal violet pectate medium for detection of pectolytic Erwinia. Letters in Applied Microbiology, 10, 171–173.CrossRefGoogle Scholar
  40. Zhang, Y., Fan, Q., & Loria, R. (2016). A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Systematic and Applied Microbiology, 39, 252–259.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Merete Wiken Dees
    • 1
    Email author
  • Renata Lebecka
    • 2
  • Juliana Irina Spies Perminow
    • 1
  • Robert Czajkowski
    • 3
  • Anna Grupa
    • 2
  • Agata Motyka
    • 3
  • Sabina Zoledowska
    • 3
  • Jadwiga Śliwka
    • 2
  • Ewa Lojkowska
    • 3
  • May Bente Brurberg
    • 1
  1. 1.Biotechnology and Plant HealthThe Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
  2. 2.Młochów Research CenterPlant Breeding and Acclimatization Institute–National Research InstituteMłochówPoland
  3. 3.Department of Biotechnology, Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of GdanskGdanskPoland

Personalised recommendations