European Journal of Plant Pathology

, Volume 148, Issue 4, pp 771–784 | Cite as

Nuclear proteome analysis of apple cultivar ‘Antonovka’ accessions in response to apple scab (Venturia inaequalis)

  • Sidona Sikorskaite-GudziunieneEmail author
  • Perttu Haimi
  • Dalia Gelvonauskiene
  • Vidmantas Stanys


This study presents the first comprehensive description of the differential nuclear proteome of apple leaves during the interaction with the fungal pathogen Venturia inaequalis. Nuclear proteins isolated from V. inaequalis infected leaves of three different apple genotypes, two ‘Antonovka’ accessions of varying resistance and cultivar ‘Puikis’ used as a control, were subjected to 2DE-DIGE. The analysis of proteins revealed 186 protein spots with significant differences in protein abundance (P ≤ 0.01), of which 67 proteins were identified through LC-MS/MS analysis. The proteins were classified into 9 functional categories that included redox regulation, cell signalling, cell homeostasis, protein degradation, epigenetic control, energy metabolism, photosynthesis, other stress-related proteins and proteins with unknown biological function. Comparison of the ‘Antonovka’ accessions revealed 13 proteins with different expression patterns. Among these were proteins mainly involved in ROS scavenging mechanisms, ubiquitin/26S proteasome-mediated protein degradation, protein folding and carbohydrate metabolism that may contribute to a varying resistance of ‘Antonovka’ accessions to apple scab. These results provide novel insights into the response of apple leaves to fungal pathogen infection and promote further investigation of the molecular mechanisms of apple resistance to V. inaequalis.


‘Antonovka’ Apple Comparative proteomics 2DE-DIGE Nucleus V.inaequalis 



The research was part of the Lithuanian Research Centre for Agriculture and Forestry (LAMMC) long-term program „Genetics and purposeful change of genotypes of agricultural and forest plants“. The authors thank Dr. Danas Baniulis for help in analysing mass spectrometry data and his kind support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2016_1131_MOESM1_ESM.pdf (301 kb)
Supplementary Fig. 1 Four biological replicate gels of nuclear proteins labeled with Cy3 or Cy5 of each apple genotype. (PDF 301 kb)
10658_2016_1131_MOESM2_ESM.pdf (363 kb)
Supplementary Table List of apple scab responsive apple nuclear proteins identified by MS/MS analysis. (PDF 363 kb)
10658_2016_1131_Fig4_ESM.gif (58 kb)
Supplementary Fig. 3

The scatterplot view of GO terms in the biological process ontology drawn by REVIGO. The scatterplot indicates the cluster representatives in a two-dimensional space derived by applying multidimensional scaling to a matrix of the GO terms’ semantic similarities. The cluster representatives are shown in distinct colour and other cluster members in dimmed colour. Bubble colour indicates provided p-value. Bubble radius indicates the generality of GO terms, where bigger bubbles imply more general terms. Scale on the right – the mean of log10 p value. (GIF 58 kb)

10658_2016_1131_MOESM3_ESM.tif (802 kb)
High resolution image (TIFF 802 kb)


  1. Allen, E. M., & Mieyal, J. J. (2012). Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxidants & Redox Signaling, 17(12), 1748–1763.CrossRefGoogle Scholar
  2. Bae, M. S., Cho, E. J., Choi, E. Y., & Park, O. K. (2003). Analysis of the Arabidopsis nuclear proteome and its response to cold stress. The Plant Journal, 36(5), 652–663.CrossRefPubMedGoogle Scholar
  3. Barajas-López Jde, D., Blanco, N. E., & Strand, Å. (2013). Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochimica et Biophysica Acta, 1833(2), 425–437.CrossRefPubMedGoogle Scholar
  4. Bhattacharjee, S., Garner, C. M., & Gassmann, W. (2013). New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Frontiers in Plant Science. doi: 10.3389/fpls.2013.00364.PubMedPubMedCentralGoogle Scholar
  5. Bhuiyan, N. H., Hamada, A., Yamada, N., Rai, V., Hibino, T., & Takabe, T. (2007). Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus Tricolor. Journal of Experimental Botany, 58(15–16), 4203–4212.CrossRefPubMedGoogle Scholar
  6. Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R., & DeLucia, E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33(10), 1597–1613.CrossRefGoogle Scholar
  7. Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K. M., & Templeton, M. D. (2011). Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology, 12(2), 105–122.CrossRefPubMedGoogle Scholar
  8. Buron-Moles, G., Wisniewski, M., Viñas, I., Teixidó, N., Usall, J., Droby, S., et al. (2015). Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen. Journal of Proteomics, 114, 136–151.CrossRefPubMedGoogle Scholar
  9. Bus, V. G. M., van de Weg, W. E., Peil, A., Dunemann, F., Zini, E., Laurens, F. N. D., et al. (2012). The role of Schmidt ‘Antonovkaʼ in apple scab resistance breeding. Tree Genetics & Genomes, 8(4), 627–642.CrossRefGoogle Scholar
  10. Cao, S., Zhang, Q., Zhu, Z., Guo, J., Chen, Y., & Xue, H. (2008). Preliminary proteomics analysis of the total proteins of flower bud induction of apple trees. Frontiers of Agriculture in China, 2(4), 467–473.CrossRefGoogle Scholar
  11. Castillejo, M. A., Amiour, N., Dumas-Gaudot, E., Rubiales, D., & Jorrin, J. V. (2004). A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry, 65(12), 1817–1828.CrossRefGoogle Scholar
  12. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011–1019.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cho, E. J., Yuen, C. Y. L., Kang, B. H., Ondzighi, C. A., Staehelin, L. A., & Christopher, D. A. (2011). Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Molecules and Cells, 32(5), 459–475.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Choudhary, M. K., Basu, D., Datta, A., Chakraborty, N., & Chakraborty, S. (2009). Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Molecular and Cellular Proteomics, 8(7), 1579–1598.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676.CrossRefPubMedGoogle Scholar
  16. Constabel, C. P., & Barbehenn, R. (2008). Defensive roles of polyphenol oxidase in plants. In A. Schaller (Ed.), Induced plant resistance to herbivory (pp. 253–270). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  17. Crosby, J. A., Janick, J., Pecknold, P. C., Korban, S. S., O’Connon, P. A., Ries, S. M., et al. (1992). Breeding apples for scab resistance: 1945–1990. Fruit Varieties Journal, 46(3), 145–166.Google Scholar
  18. Cross, J. V., & Templeton, D. J. (2004). Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochemical Journal, 381(Pt 3), 675–683.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deslandes, L., & Rivas, S. (2011). The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signaling & Behavior, 6(1), 42–48.CrossRefGoogle Scholar
  20. Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11(8), 539–548.CrossRefPubMedGoogle Scholar
  21. Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.CrossRefGoogle Scholar
  22. Gessler, C., & Pertot, I. (2012). Vf scab resistance of malus. Trees, 26(1), 95–108.CrossRefGoogle Scholar
  23. Gessler, C., Patocchi, A., Sansavini, S., Tartarini, S., & Gianfranceschi, L. (2006). Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences, 25(6), 473–503.CrossRefGoogle Scholar
  24. Gizak, A., & Dzugaj, A. (2003). FBPase is in the nuclei of cardiomyocytes. FEBS Letters, 539(1–3), 51–55.CrossRefPubMedGoogle Scholar
  25. Guarino, C., Arena, S., De Simone, L., D’Ambrosio, C., Santoro, S., Rocco, M., et al. (2007). Proteomic analysis of the major soluble components in Annurca apple flesh. Molecular Nutrition & Food Research, 51(2), 255–262.CrossRefGoogle Scholar
  26. Haake, V., Zrenner, R., Sonnewald, U., & Stitt, M. (1998). A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant Journal, 14(2), 147–157.CrossRefPubMedGoogle Scholar
  27. Hammond-Kosack, K. E., & Jones, J. D. G. (1997). Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 575–607.CrossRefPubMedGoogle Scholar
  28. Heath, M. C. (2003). Nonhost resistance in plants to microbial pathogens. In R. A. B. Ezekowitz & J. A. Hoffmann (Eds.), Innate immunity (pp. 47–57). New York: Humana Press.Google Scholar
  29. Hemmat, M., Brown, S. K., Aldwinckle, H. S., Mehlenbacher, S. A., & Weeden, N. F. (2003). Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2. Acta Horticulturae, 622, 153–161.CrossRefGoogle Scholar
  30. Hough, L. F., & Shay, J. R. (1949). Breeding for scab resistant apples. Phytopathology, 39, 10.Google Scholar
  31. Huber, L. A., Pfaller, K., & Vietor, I. (2003). Organelle proteomics: implications for subcellular fractionation in proteomics. Circulation Research, 92(9), 962–968.CrossRefPubMedGoogle Scholar
  32. Isaacson, T., Damasceno, C. M., Saravanan, R. S., He, Y., Catalá, C., Saladié, M., et al. (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 1(2), 769–774.CrossRefPubMedGoogle Scholar
  33. Janick, J., Cummins, J. N., Brown, S. K., & Hemmat, M. (1996). Apples. In J. Janick & J. Moore (Eds.), Fruit breeding, tree and tropical fruits (pp. 1–77). New York: Wiley.Google Scholar
  34. Jones, J., & Dangl, J. (2006). The plant immune system. Nature, 444(7117), 323–329.CrossRefPubMedGoogle Scholar
  35. Juniper, B. E., & Mabberley, D. J. (2006). The story of the apple. Portland: Timber Press.Google Scholar
  36. Kim, M., Ahn, J. W., Jin, U. H., Choi, D., Paek, K. H., & Pai, H. S. (2003). Activation of the programmed cell death pathway by inhibition of proteasome function in plants. Journal of Biological Chemistry, 278(21), 19406–19415.CrossRefPubMedGoogle Scholar
  37. Lateur, M., & Populer, C. (1994). Screening fruit tree genetic resources in Belgium for disease resistance and other desirable characters. Euphytica, 77(1), 147–153.CrossRefGoogle Scholar
  38. Libik-Konieczny, M., Surowka, E., Nosek, M., Goraj, S., & Miszalski, Z. (2012). Pathogen-induced changes in malate content and NADP-dependent malic enzyme activity in C3 or CAM performing Mesembryanthemum crystallinum L. plants. Acta Physiologiae Plantarum, 34(4), 1471–1477.CrossRefGoogle Scholar
  39. López, A., Ramírez, V., García-Andrade, J., Flors, V., & Vera, P. (2011). The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genetics. doi: 10.1371/journal.pgen.1002434.Google Scholar
  40. MacHardy, W. E. (1996). Apple scab: biology, epidemiology, and management. St.Paul: APS Press.Google Scholar
  41. Maurino, V. G., Saigo, M., Andreo, C. S., & Drincovich, M. F. (2001). Non-photosynthetic ‘malic enzyme’ from maize: a constituvely expressed enzyme that responds to plant defence inducers. Plant Molecular Biology, 45(4), 409–420.CrossRefPubMedGoogle Scholar
  42. Milli, A., Cecconi, D., Bortesi, L., Persi, A., Rinalducci, S., Zamboni, A., et al. (2012). Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola. Journal of Proteomics, 75(4), 1284–1302.CrossRefPubMedGoogle Scholar
  43. Morgan, J., & Richards, A. (1993). The book of apples. London: Ebury Press.Google Scholar
  44. Morris, A. C., & Djordjevic, M. A. (2001). Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis, 22(3), 586–598.CrossRefPubMedGoogle Scholar
  45. Mysore, K. S., & Ryu, C. M. (2004). Nonhost resistance: how much do we know? Trends in Plant Science, 9(2), 97–104.CrossRefPubMedGoogle Scholar
  46. Napier, R. M., Trueman, S., Henderson, J., Boyce, J. M., Hawes, C., Fricker, M. D., et al. (1995). Purification, sequencing and functions of calreticulin from maize. Journal of Experimental Botany, 46(10), 1603–1613.CrossRefGoogle Scholar
  47. Nice, E., & Catimel, B. (2004). Affinity-based biosensors, microarrays and proteomics. In D. Speicher (Ed.), Proteome analysis (pp. 243–275). Amsterdam: Elsevier.CrossRefGoogle Scholar
  48. Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 147(3), 1251–1263.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pikunova, A., Madduri, M., Sedov, E., Noordijk, Y., Peil, A., Troggio, M., et al. (2014). ‘Schmidt’s Antonovka’ is identical to ‘common Antonovka’, an apple cultivar widely used in Russia in breeding for biotic and abiotic stresses. Tree Genetics & Genomes, 10(2), 261–271.CrossRefGoogle Scholar
  50. Qiu, Y., Xi, J., Du, L., & Poovaiah, B. W. (2012). The function of calreticulin in plant immunity. Plant Signaling & Behavior, 7(8), 907–910.CrossRefGoogle Scholar
  51. Rivas, S. (2012). Nuclear dynamics during plant innate immunity. Plant Physiology, 158(1), 87–94.CrossRefPubMedGoogle Scholar
  52. Roth, C., & Wiermer, M. (2012). Nucleoporins Nup160 and Seh1 are required for disease resistance in Arabidopsis. Plant Signaling & Behavior, 7(10), 1212–1214.CrossRefGoogle Scholar
  53. Sansavini, S., Donati, F., Costa, F., & Tartarini, S. (2004). Advances in apple breeding for enhanced fruit qualityand resistance to biotic stresses: new varieties for the european market. Journal of Fruit and Ornamental Plant Research, 12, 13–52.Google Scholar
  54. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860.CrossRefPubMedGoogle Scholar
  55. Shulaev, V., Korban, S. S., Sosinski, B., Abbott, A. G., Aldwinckle, H. S., Folta, K. M., et al. (2008). Multiple models for Rosaceae genomics. Plant Physiology, 147(3), 985–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sikorskaite, S., Gelvonauskiene, D., Stanys, V., & Baniulis, D. (2012). Characterization of microsatellite loci in apple (Malus × domestica Borkh.) cultivars. Žemdirbystė = Agriculture, 99(2), 131–138.Google Scholar
  57. Sikorskaite, S., Rajamäki, M. L., Baniulis, D., Stanys, V., & Valkonen, J. P. T. (2013a). Protocol: optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families. Plant Methods. doi: 10.1186/1746-4811-9-31.PubMedPubMedCentralGoogle Scholar
  58. Sikorskaite, S., Gelvonauskienė, D., Bendokas, V., Stanys, V., & Baniulis, D. (2013b). Malus sp. - V.inaequalis interaction characteristics among local apple cultivars in Lithuania. Acta Horticulturae, 976, 567–572.CrossRefGoogle Scholar
  59. Smedegaard-Petersen, V., & Tolstrup, K. (1985). The limiting effect of disease resistance on yield. Annual Review of Phytopathology, 23, 475–490.CrossRefGoogle Scholar
  60. Sobhanian, H., Aghaei, K., & Komatsu, S. (2011). Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? Journal of Proteomics, 74(8), 1323–1337.CrossRefPubMedGoogle Scholar
  61. Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One. doi: 10.1371/journal.pone.0021800.PubMedPubMedCentralGoogle Scholar
  62. Suty, L., Lequeu, J., Lançon, A., Etienne, P., Petitot, A. S., & Blein, J. P. (2003). Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of “plant defense proteasomes”. The International Journal of Biochemistry & Cell Biology, 35(5), 637–650.CrossRefGoogle Scholar
  63. Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology, 6(4), 351–357.CrossRefPubMedGoogle Scholar
  64. Tuinyla, V., Lukoševičius, A., & Bandaravičius, A. (1990). Lietuvos pomologija. obelys ir kriaušės. Vilnius: Mokslas.Google Scholar
  65. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., et al. (2010). The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 42(10), 833–839.CrossRefPubMedGoogle Scholar
  66. Vickers, C. E., Possell, M., Cojocariu, C. I., Velikova, V. B., Laothawornkitkul, J., Ryan, A., et al. (2009). Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant, Cell & Environment, 32(5), 520–531.CrossRefGoogle Scholar
  67. Voulgaris, I., O’Donnell, A., Harvey, L. M., & McNeil, B. (2012). Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield? Scientific Reports. doi: 10.1038/srep00322.PubMedPubMedCentralGoogle Scholar
  68. Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.CrossRefPubMedGoogle Scholar
  69. Winterberg, B., Du Fall, L. A., Song, X., Pascovici, D., Care, N., Molloy, M., et al. (2014). The necrotrophic effector protein SnTox3 re-programs metabolism and elicits a strong defence response in susceptible wheat leaves. BMC Plant Biology. doi: 10.1186/s12870-014-0215-5.PubMedPubMedCentralGoogle Scholar
  70. Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322(Pt 3), 681–692.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Xu, J., Audenaert, K., Hofte, M., & De Vleesschauwer, D. (2013). Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PloS One. doi: 10.1371/annotation/659105c2-8364-4cc7-94e7-66620370637a.Google Scholar
  72. Yazaki, K. (2006). ABC transporters involved in the transport of plant secondary metabolites. FEBS Letters, 580(4), 1183–1191.CrossRefPubMedGoogle Scholar
  73. Zemach, A., & Grafi, G. (2007). Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends in Plant Science, 12(2), 80–85.CrossRefPubMedGoogle Scholar
  74. Zhang, C. X., Tian, Y., & Cong, P. H. (2015). Proteome analysis of pathogen-responsive proteins from apple leaves induced by the Alternaria blotch Alternaria alternata. PloS One. doi: 10.1371/journal.pone.0122233.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Sidona Sikorskaite-Gudziuniene
    • 1
    Email author
  • Perttu Haimi
    • 1
  • Dalia Gelvonauskiene
    • 1
  • Vidmantas Stanys
    • 1
  1. 1.Insitute of Horticulture, Lithuanian Research Centre for Agriculture and ForestryKaunas distrLithuania

Personalised recommendations