European Journal of Plant Pathology

, Volume 148, Issue 2, pp 491–496 | Cite as

Pseudopithomyces chartarum associated with wheat seeds in Argentina, pathogenicity and evaluation of toxigenic ability

  • Analía Perelló
  • Mónica Aulicino
  • Sebastián A. Stenglein
  • Román Labuda
  • María V. MorenoEmail author


Argentina is one of the top 10 world producers and exporters of wheat. In routine surveys of wheat (Triticum aestivum L.) in Buenos Aires Province, Argentina, a new disease was observed in 2012 on seeds of wheat cv. Buck Meteoro. Symptomatic grains (black points) and leaves (chlorosis and spots) were collected during the spring of that year. The objectives of the present study were to identify the causal agent, to investigate its pathogenicity in relation to nine wheat cultivars and to identify the secondary metabolites produced by fungus. Symptomatic grains were plated on potato dextrose agar (PDA). Morphological characterization of colonies and sequencing of the ITS region after DNA extraction identified it as Pseudopithomyces chartarum. For pathogenicity tests, two different isolates, P221 and P224, were inoculated on seedlings of nine wheat cultivars, which showed different disease symptoms, % of grain germination (GG), % of grain discoloration (GD) and % of weak seedlings (WS), suggesting different levels of response against Pseudopithomyces chartarum. Particularly B. Meteoro, Buck Guapo and Klein Proteo cultivars demonstrated major infection tolerance for GD and WS. In contrast, Sy 100 and Klein Pantera were most affected showing weakness, chlorosis, or reduced length of coleoptile, and 50% of necrotic symptoms. Pseudopithomyces chartarum isolates produced secondary metabolites including alternariol, alternariol mono-methyl ether, altertoxin I and altertoxine II. The fungus is a new pathogen of wheat in Argentina that can cause diseases on different cultivars as well as produce mycotoxins.


Pseudopithomyces chartarum Fungi Symptoms evaluation Mycotoxins 


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefPubMedGoogle Scholar
  2. Amaral, R. E. M., Nazário, W., & Andrade, S.O. (1976). Ocorrência do fungo Pithomyces chartarum (Berk. & Curt.) Ellisem grãos e forrageiras no Brasil. Proceedings of the Congreso Brasileiro de Fitopatología Campinas, San Pablo, Brazil, p. 82 (Abstr.).Google Scholar
  3. Ariyawansa, H., Hyde, K., Jayasiri, S., & Chen, X. H. (2015). Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 27–274. doi: 10.1007/s13225-015-0346-5.
  4. Bezille, P., Braun, J. P., & LeBars, J. (1984). First identification of facial eczema in Europe: epidemiological, clinical and biological aspects. Recueil de Medecine Veterinaire, 160, 339–347.Google Scholar
  5. Collin, R. G., Odriozola, E., & Towers, N. R. (1998). Sporidesmin production by Pithomyces chartarum isolates from Australia, Brazil, New Zealand and Uruguay. Mycological Research, 102, 163–166.CrossRefGoogle Scholar
  6. Di Renzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2012). InfoStat vers. 2012. InfoStat group, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba: Argentina.Google Scholar
  7. Dingley, J. (1962). Pithomyces chartarum, its occurrence morphology, and taxonomy. New Zealand Journal of Agricultural Research, 5, 49–61.CrossRefGoogle Scholar
  8. EFSA (2011). Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. European Food Safety Authority. EFSA Journal, 9(19), 2407.Google Scholar
  9. Eken, C., Jochum, C. C., & Yuen, G. Y. (2006). First report of leaf spot of smooth bromegrass caused by Pithomyces chartarum in Nebraska. Plant Disease, 90, 108.CrossRefGoogle Scholar
  10. Farr, D. F., & Rossman, A. Y. (2010). Fungal databases, systematic mycology and microbiology laboratory. USDA-ARS. Accessed 23 September 2015.
  11. Farr, D. F., Rossman, A. Y., Palm, M. E., McCray, E. B. (2007). Fungal databases, systematic botany and mycology laboratory, ARS, USDA. Retrieved March 5, 2007, from
  12. Houbraken, J., Frisvad, J. C., & Samson, R. A. (2006). Sporidesmin production by Pithomyces. Proceedings of the 8th International Mycological Congress, Cairns, Australia, p. 20 (Abstr.).Google Scholar
  13. ISTA (1993). International rules for seed treating. International Seed Testing Association, 13, 200–520.Google Scholar
  14. Jonardhanan, K. K. (2002). Diseases of major medicinal plants. Daya Publ. House, Delhi: India.Google Scholar
  15. Licoff, N., Khalloub, P., Diab, S., Cantón, G., Odeón, A., & Odriozola, E. (2008). Evaluación toxicológica de Pithomyces chartarum en Argentina. Revista de Medicina Veterinaria, 89, 9–12.Google Scholar
  16. Ponappa, K. M. (1977). New record of fungi associated with Cannabis sativa. Journal of Mycology and Plant Pathology, 7, 139.Google Scholar
  17. Russomanno, O. M. R., Amaral, R. E. M., Malavolta, V. M. A., Alcantara, V. B. G., & Schammass, E. A. (1985). Ocorrência do fungo Pithomyces chartarum (Berk. & Curt.) M. B. Ellis em forrageiras pastoreadas por bovinos. Revista de Agricultura Piracicaba, 60, 249–265.Google Scholar
  18. Samson, R. A., Hoekstra, E. S., Frisvad, J. C., & Filtenborg, O. (Eds.) (2002). Introduction to food- and air borne fungi (6th ed.). Utrecht: Centraal Bureau voor Schimmelcultures.Google Scholar
  19. Stenglein, S. A., & Balatti, P. A. (2006). Genetic diversity of Phaeoisariopsis griseola in Argentina as revealed by virulence and molecular markers. Physiological and Molecular Plant Pathology, 68, 158–167.CrossRefGoogle Scholar
  20. Tančinová, D., & Labuda, R. (2009). Fungi on wheat bran and their toxinogenity. Annals of Agricultural and Environmental Medicine, 16, 325–331.PubMedGoogle Scholar
  21. Tóth, B., Csosz, M., Dijksterhuis, J., Frisvad, J. C., & Vagra, J. (2007). Pithomyces chartarum as a pathogen of wheat. Journal of Plant Pathology, 89, 405–408.Google Scholar
  22. Varga, Z., & Fischl, G. (2006). Pathogenic fungal species isolated from leaves and seeds of smooth brome (Bromus inermis Leyss.). Communications in Agricultural and Applied Biological Sciences, 71, 1103–1108.PubMedGoogle Scholar
  23. Vishwanath, V., Sulyok, M., Labuda, R., Bicker, W., & Krska, R. (2009). Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 395, 1355–1372.CrossRefPubMedGoogle Scholar
  24. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes forphylogenetics. In M. A. Innis, D. H. Gelfand, J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). Academic Press, San Diego, CA: USA.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Analía Perelló
    • 1
  • Mónica Aulicino
    • 2
  • Sebastián A. Stenglein
    • 3
  • Román Labuda
    • 4
  • María V. Moreno
    • 3
    Email author
  1. 1.Facultad de Ciencias Agrarias y Forestales, CIDEFI-CONICET-FitopatologíaUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  2. 2.Facultad de Ciencias Agrarias y Forestales, Instituto Fitotècnico de Santa Catalina (IFSC)Universidad Nacional de La Plata (UNLP)Lomas de ZamoraArgentina
  3. 3.BIOLAB (CICBA-INBIOTEC-CONICET)Facultad de Agronomía (UNCPBA)AzulArgentina
  4. 4.LaboVet GmbH Campus ViennaWienAustria

Personalised recommendations