European Journal of Plant Pathology

, Volume 148, Issue 1, pp 97–107 | Cite as

Unique clones of the pitch canker fungus, Fusarium circinatum, associated with a new disease outbreak in South Africa

  • Felix F. Fru
  • Emma T. Steenkamp
  • Michael J. Wingfield
  • Quentin C. Santana
  • Jolanda Roux
Article
  • 224 Downloads

Abstract

Pitch canker of pines is caused by the fungus Fusarium circinatum. In South Africa, this pathogen has mostly been a nursery problem. From 2005, however, outbreaks of pitch canker have been reported from established Pinus radiata and P. greggii in the Western and Eastern Cape Provinces. Most recently, pitch canker-like symptoms were observed on 10-year-old P. greggii trees in a plantation in the midlands of the KwaZulu-Natal (KZN) Province. The aim of this study was to: (i) identify the causal agent of the observed symptoms, (ii) determine the genetic diversity, and (iii) the mode of reproduction of this fungal population. Furthermore, the aggressiveness of isolates from these trees was compared with that of isolates obtained previously from P. patula in South Africa. Isolates from the P. greggii trees in KZN were confirmed as F. circinatum based on both morphology and DNA sequence analyses. Microsatellite marker analyses revealed the presence of five genotypes of F. circinatum, not previously reported from other plantations in South Africa, with one of these genotypes being dominant. These genotypes were all pathogenic to P. patula and P. elliottii. No evidence of sexual reproduction was detected in the KZN population of the fungus. This was consistent with the fact that isolates from P. greggii were all of the MAT-2 mating type, in contrast to previously collected isolates from across South Africa that included both mating types. The results suggest that the outbreak of pitch canker on P. greggii in KZN represents a separate introduction of F. circinatum into the region with important implications for managing the disease.

Keywords

Mating type Microsatellite analyses Pinus greggii Population diversity 

Notes

Acknowledgments

We are grateful to members of the Tree Protection Cooperative Programme (TPCP) and Department of Science and Technology (DST)/National Research Foundation (NRF) and the Centre of Excellence in Tree Health Biotechnology (CTHB) of South Africa, for providing funding and support for this study. The assistance of foresters in the identification of the site and assistance with sampling in Demagtenberg, KwaZulu-Natal Province is appreciated.

References

  1. Agapow, P. M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101–102.CrossRefGoogle Scholar
  2. Bartlett, M. S. (1936). The square root transformation in analysis of variance. Supplement to the Journal of the Royal Statistical Society, 3, 68–78.CrossRefGoogle Scholar
  3. Berbegal, M., Perez-Sierra, A., Armengol, J., & Grunwald, N. J. (2013). Evidence for multiple introductions and clonality in Spanish populations of Fusarium circinatum. Phytopathology, 103, 851–861.CrossRefPubMedGoogle Scholar
  4. Britz, H., Coutinho, T. A., Wingfield, B. D., Marasas, W. F. O., & Wingfield, M. J. (2005). Diversity and differentiation in two populations of Gibberella circinata in South Africa. Plant Pathology, 54, 46–52.CrossRefGoogle Scholar
  5. Britz, H., Wingfield, M. J., Coutinho, T. A., Marasas, W. F. O., & Leslie, J. F. (1998). Female fertility and mating type distribution in a South African population of Fusarium subglutinans f. sp. pini. Applied and Environmental Microbiology, 64, 2094.PubMedPubMedCentralGoogle Scholar
  6. Burnett, J. H. (2003). Fungal populations and species. Oxford university press on demand. Oxford: United Kingdom.Google Scholar
  7. Correll, J. C., Gordon, T. R., & McCain, A. H. (1992). Genetic diversity in California and Florida populations of the pitch canker fungus Fusarium subglutinans f. Sp. pini. Phytopathology, 82, 415–420.CrossRefGoogle Scholar
  8. Coutinho, T. A., Steenkamp, E. T., Mongwaketsi, K., Wilmot, M., & Wingfield, M. J. (2007). First outbreak of pitch canker in a south African pine plantation. Australasian Plant Pathology, 36, 256–261.CrossRefGoogle Scholar
  9. DAFF (Department of Agriculture, Forestry and Fisheries), (2009). Report on commercial timber resources and primary roundwood processing in South Africa 2008/9.Google Scholar
  10. Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Engelbrecht, C. J., & Engelbrecht, F. A. (2016). Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals. Theoretical and Applied Climatology, 123, 247–261.CrossRefGoogle Scholar
  12. Geiser, D. M., Aoki, T., Bacon, C. W., et al. (2013). One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves long-standing use. Phytopathology, 103, 400–408.CrossRefPubMedGoogle Scholar
  13. Geiser, D. M., Jiménez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A., & O’Donnell, K. (2004). FUSARIUM-ID: a DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110, 473–479.CrossRefGoogle Scholar
  14. Gordon, T. R., Storer, A. J., & Okamoto, D. (1996). Population structure of the pitch canker pathogen, Fusarium subglutinans f. Sp. pini, in California. Mycological Research, 100, 850–854.CrossRefGoogle Scholar
  15. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRefPubMedGoogle Scholar
  16. Iturritxa, E., Genley, R. J., Wright, J., Heppe, E., Steenkamp, E. T., Gordon, T. R., & Wingfield, M. J. (2011). A genetically homogenous population of Fusarium circinatum causes pitch canker of Pinus radiata in the Basque Country, Spain. Fungal Biology, 115, 288–295.CrossRefPubMedGoogle Scholar
  17. Leslie, J. F., & Klein, K. K. (1996). Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics, 144, 557–567.PubMedPubMedCentralGoogle Scholar
  18. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.CrossRefPubMedGoogle Scholar
  19. Mitchell, R. G., Wingfied, M. J., Steenkamp, E. T., Roux, J., Verryn, S., & Coutinho, T. A. (2014). Comparison of the tolerance of Pinus patula seedlings and established trees to infection by Fusarium circinatum. Southern Forests, 76, 151–159.CrossRefGoogle Scholar
  20. Mitchell, R. G., Wingfield, M. J., Hodge, G. R., Steenkamp, E. T., & Coutinho, T. A. (2012). Selection of Pinus spp. in South Africa for tolerance in infection by the pitch canker fungus. New Forests, 43, 473–489.CrossRefGoogle Scholar
  21. Mitchell, R. G., Steenkamp, E. T., Coutinho, T. A., & Wingfield, M. J. (2011). The pitch canker fungus, Fusarium circinatum: implications for south African forestry. Southern Forests, 73, 1–13.CrossRefGoogle Scholar
  22. Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infested plant tissues. Nucleic Acids Research, 2, 6115–6116.CrossRefGoogle Scholar
  23. Morariu, V. I., Srinivasan, B. V., Raykar, V. C., Duraiswami, R., & Davis, L. S. (2008). Automatic online tuning for fast Gaussian summation. Advances in Neural Information Processing Systems, 21, 1113–1120.Google Scholar
  24. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Science, 70, 3321–3323.CrossRefGoogle Scholar
  25. Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual of identification. University Park, PA: Pennsylvania State University Press.Google Scholar
  26. Nirenberg, H. I., & O’Donnell, K. (1998). New Fusarium species and combinations with the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.CrossRefGoogle Scholar
  27. O’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of Gibberella fujikuroi species complex. Mycologia, 90, 465–493.CrossRefGoogle Scholar
  28. Porter, B., Wingfield, M. J., & Coutinho, T. A. (2009). Susceptibility of south African native conifers to the pitch canker pathogen, Fusarium circinatum. South African Journal of Botany, 75, 380–382.CrossRefGoogle Scholar
  29. Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.CrossRefPubMedGoogle Scholar
  30. Santana, Q. C., Coetzee, M. P. A., Steenkamp, E. T., Mlonyeni, O. X., Hammond, G. N. A., Wingfield, M. J., & Wingfield, B. D. (2009). Microsatellite discovery by deep sequencing of enriched genomic libraries. BioTechniques, 46, 217–223.CrossRefPubMedGoogle Scholar
  31. Santana, Q. C., Coetzee, M. P. A., Wingfield, B. D., Wingfield, M. J., & Steenkamp, E. T. (2016). Nursery linked plantation-outbreaks and evidence for multiple introductions of the pitch canker pathogen Fusarium circinatum into South Africa. Plant Pathology, 65, 357–368.CrossRefGoogle Scholar
  32. Schulze, R. E., & Maharaj, M. (1997). South African atlas of agrohydrology and-climatology. Pretoria, South Africa: Water Research Commission.Google Scholar
  33. Schweigkofler, W., O’Donnell, K., & Garbelotto, M. (2004). Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Applied and Environmental Microbiology, 70, 3512–3520.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Steenkamp, E. T., Makhari, O. M., Coutihno, T. A., Wingfield, B. D., & Wingfield, M. J. (2014). Evidence for a new introduction of the pitch canker fungus Fusarium circinatum in South Africa. Plant Pathology, 63, 530–538.CrossRefGoogle Scholar
  35. Steenkamp, E. T., Wingfield, B. D., Coutinho, T. A., Zeller, K. A., Wingfield, M. J., Marasas, W. F. O., & Leslie, J. F. (2000). PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Applied and Environmental Microbiology, 66, 4378–4382.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Stoddart, J. A., & Taylor, J. F. (1988). Genotype diversity: estimation and prediction in samples. Genetics, 118, 705–711.PubMedPubMedCentralGoogle Scholar
  37. Swett, C. L., Porter, B., Fourie, G., Steenkamp, E. T., Gordon, T. R., & Wingfield, M. J. (2014). Association of the pitch canker fungus Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Southern Forests, 76, 161–166.CrossRefGoogle Scholar
  38. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Viljoen, A., Wingfield, M. J., & Marasas, W. F. O. (1994). First report of Fusarium subglutinans f.Sp. pini on pine seedlings in South Africa. Plant Disease, 78, 309–312.CrossRefGoogle Scholar
  40. Viljoen, A., Wingfield, M. J., Gordon, T. R., & Marasas, W. F. O. (1997). Genotypic diversity of a south African population of the pitch canker fungus Fusarium subglutinans f. Sp. pini. Plant Pathology, 46, 590–593.CrossRefGoogle Scholar
  41. Wikler, K. R., & Gordon, T. R. (2000). An assessment of genetic relationships among populations of Fusarium circinatum in different parts of the world. Canadian Journal of Botany, 78, 709–717.CrossRefGoogle Scholar
  42. Wingfield, M. J., Hammerbacher, R. J., Ganley, R. J., Gordon, T. R., Wingfield, B. D., & Coutinho, T. A. (2008). Pitch canker caused by Fusarium circinatum-a growing threat to pine plantations and forests worldwide. Australasian Plant Pathology, 37, 319–334.CrossRefGoogle Scholar
  43. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.PubMedPubMedCentralGoogle Scholar
  44. Yeh F.C., Yang, R. C., & Boyle, T. (1999). POPEGENE version 1.31 Microsoft windows based freeware for population genetic analysis. Alberta. [https://www.ualberta.ca/~fyeh/popgene.pdf]. Accessed 22 October 2015.

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Felix F. Fru
    • 1
  • Emma T. Steenkamp
    • 2
  • Michael J. Wingfield
    • 1
  • Quentin C. Santana
    • 3
  • Jolanda Roux
    • 1
  1. 1.Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, Private Bag X20University of PretoriaPretoriaSouth Africa
  2. 2.Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, Private Bag X20University of PretoriaPretoriaSouth Africa
  3. 3.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, Private Bag X20University of PretoriaPretoriaSouth Africa

Personalised recommendations