European Journal of Plant Pathology

, Volume 146, Issue 3, pp 483–496 | Cite as

New host range and distribution of Ceratocystis pirilliformis in South Africa

  • D. H. Lee
  • J. Roux
  • B. D. Wingfield
  • I. Barnes
  • M. J. Wingfield
Article

Abstract

Ceratocystis pirilliformis was first described from wounds on Eucalyptus trees in Australia and subsequently found as a common wound inhabitant on these trees in South Africa. During a recent disease survey carried out to identify Ceratocystis species infecting tree wounds in South Africa, C. pirilliformis was isolated from various tree species, including a native Rapanea species and two non-native hosts, Acacia mearnsii and E. grandis growing in the Western Cape Province. These new collections from the Western Cape Province, together with isolates of C. pirilliformis previously collected from Eucalyptus species in the eastern part of the country, provided the opportunity to investigate the possible movement of the pathogen since it was first recorded in South Africa. The identity of newly collected isolates of C. pirilliformis was confirmed using DNA sequence comparisons using partial β-tubulin and TEF-1α gene regions. Microsatellite markers were screened on a collection of C. pirilliformis isolates from the Western Cape Province. Results showed that this population has higher levels of population genetic estimates such as private allele frequency, allelic richness, and gene diversity. Inoculation tests were performed to determine whether C. pirilliformis is a pathogen of A. mearnsii, which is planted as an important plantation forestry tree in the country. All isolates were shown to be highly virulent. Results of the study consequently revealed that C. pirilliformis has a wider host range and geographic distribution in South Africa than previously recognized and that it is a potentially important pathogen of A. mearnsii.

Keywords

Acacia Eucalyptus Geographical expansion Microascales Microsatellites Population 

Notes

Acknowledgments

We thank members the Tree Protection Co-operative Program (TPCP), the National Research Foundation (NRF; Grant Specific Unique Reference Number, 78566, 83924), the THRIP initiative of the Department of Trade and Industry (DTI), and the Department of Trade and Industry (DST)/NRF Centre of Excellence in Tree Health Biotechnology, South Africa, for financial support. The Grant holders acknowledge that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research are that of the author(s), and that the NRF accepts no liability whatsoever in this regard. Cultures from the Garden Route National Park were kindly made available by Mr. Alain Misse. The authors also thank the owner and viticulturist of the Knorhoek Wine Farm, James van Niekerk, who allowed us to collect samples on his farm.

Supplementary material

10658_2016_933_MOESM1_ESM.xlsx (13 kb)
ESM 1 (XLSX 13 kb)
10658_2016_933_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 14 kb)
10658_2016_933_MOESM3_ESM.xlsx (12 kb)
ESM 3 (XLSX 12 kb)

References

  1. Al Adawi, A. O., Al Jabri, R. M., Deadman, M. L., Barnes, I., Wingfield, B. D., & Wingfield, M. J. (2013). The mango sudden decline pathogen, Ceratocystis manginecans, is vectored by Hypocryphalus mangiferae (Coleoptera: Scolytinae) in Oman. European Journal of Plant Pathology, 135(2), 243–251.CrossRefGoogle Scholar
  2. Al Adawi, A. O., Barnes, I., Khan, I. A., Deadman, M. L., Wingfield, B. D., & Wingfield, M. J. (2014). Clonal structure of Ceratocystis manginecans populations from mango wilt disease in Oman and Pakistan. Australasian Plant Pathology, 43(4), 393–402.Google Scholar
  3. Anderson, J. B., Kohn, L. M., & Leslie, J. F. (1992). Genetic mechanisms in fungal adaptation. In G. C. Carroll & D. T. Wicklow (Eds.), The fungal community: Its organization and role in the ecosystem (pp. 73–98). New York: Marcel Dekker, Inc.Google Scholar
  4. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544.CrossRefGoogle Scholar
  5. Barnes, I., Gaur, A., Burgess, T., Roux, J., Wingfield, B. D., & Wingfield, M. J. (2001). Microsatellite markers reflect intra‐specific relationships between isolates of the vascular wilt pathogen Ceratocystis fimbriata. Molecular Plant Pathology, 2(6), 319–325.PubMedCrossRefGoogle Scholar
  6. Barnes, I., Roux, J., Wingfield, B. D., O’Neill, M., & Wingfield, M. J. (2003a). Ceratocystis fimbriata infecting Eucalyptus grandis in Uruguay. Australasian Plant Pathology, 32(3), 361–366.CrossRefGoogle Scholar
  7. Barnes, I., Roux, J., Wingfield, B. D., Dudzinski, M. J., Old, K. M., & Wingfield, M. J. (2003b). Ceratocystis pirilliformis, a new species from Eucalyptus nitens in Australia. Mycologia, 95(5), 865–871.PubMedCrossRefGoogle Scholar
  8. Barnes, I., Wingfield, M. J., Carbone, I., Kirisits, T., & Wingfield, B. D. (2014). Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecology and Evolution, 4(18), 3642–3661.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bengtsson, S. B., Vasaitis, R., Kirisits, T., Solheim, H., & Stenlid, J. (2012). Population structure of Hymenoscyphus pseudoalbidus and its genetic relationship to Hymenoscyphus albidus. Fungal Ecology, 5(2), 147–153.CrossRefGoogle Scholar
  10. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.Google Scholar
  11. de Beer, Z. W., Duong, T. A., Barnes, I., Wingfield, B. D., & Wingfield, M. J. (2014). Redefining Ceratocystis and allied genera. Studies in Mycology, 79, 187–219.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Desprez-Loustau, M. L., Robin, C., Buee, M., Courtecuisse, R., Garbaye, J., Suffert, F., et al. (2007). The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22(9), 472–480.CrossRefGoogle Scholar
  13. DeVay, J. E., Lukezic, F. L., English, H., Trujillo, E. E., & Moller, W. J. (1968). Ceratocystis canker of deciduous fruit trees. Phytopathology, 58, 949–954.Google Scholar
  14. Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.CrossRefGoogle Scholar
  15. Engelbrecht, C. J. B., Harrington, T. C., Steimel, J., & Capretti, P. (2004). Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Molecular Ecology, 13(10), 2995–3005.PubMedCrossRefGoogle Scholar
  16. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620.PubMedCrossRefGoogle Scholar
  17. Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567.PubMedCrossRefGoogle Scholar
  18. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  19. Ferreira, F. A., Demuner, A. M., Demuner, N. L., & Pigato, S. (1999). Murcha de Ceratocystis em eucalipto no Brasil. Fitopatologia Brasileira, 24, 284.Google Scholar
  20. Ferreira, E. M., Harrington, T. C., Thorpe, D. J., & Alfenas, A. C. (2010). Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil. Plant Pathology, 59(4), 721–735.CrossRefGoogle Scholar
  21. Fourie, A., Wingfield, M. J., Wingfield, B. D., & Barnes, I. (2015). Molecular markers delimit cryptic species in Ceratocystis sensu stricto. Mycological Progress, 14(1), 1–18.CrossRefGoogle Scholar
  22. Giraud, T., Gladieux, P., & Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution, 25(7), 387–395.CrossRefGoogle Scholar
  23. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323–1330.PubMedPubMedCentralGoogle Scholar
  24. Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences, 91(24), 11591–11595.CrossRefGoogle Scholar
  25. Gross, A., Grünig, C. R., Queloz, V., & Holdenrieder, O. (2012). A molecular toolkit for population genetic investigations of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Forest Pathology, 42(3), 252–264.CrossRefGoogle Scholar
  26. Haack, R. A. (2006). Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Canadian Journal of Forest Research, 36(2), 269–288.CrossRefGoogle Scholar
  27. Hallatschek, O., & Nelson, D. R. (2008). Gene surfing in expanding populations. Theoretical Population Biology, 73(1), 158–170.PubMedCrossRefGoogle Scholar
  28. Halsted, B. D. (1890). Some fungous diseases of the sweet potato. The black rot. New Jersey Agriculture Experiment Station Bulletin, 76, 7–14.Google Scholar
  29. Heath, R. N., Wingfield, M. J., Van Wyk, M., & Roux, J. (2009). Insect associates of Ceratocystis albifundus and patterns of association in a native savanna ecosystem in South Africa. Environmental Entomology, 38(2), 356–364.PubMedCrossRefGoogle Scholar
  30. Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52(4), 577–586.CrossRefGoogle Scholar
  31. Jacobs, K., Bergdahl, D. R., Wingfield, M. J., Halik, S., Seifert, K. A., Bright, D. E., & Wingfield, B. D. (2004). Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108(04), 411–418.PubMedCrossRefGoogle Scholar
  32. Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kile, G. A. (1993). Plant diseases caused by species of Ceratocystis sensu stricto and Chalara. In M. J. Wingfield, K. A. Seifert, & J. F. Webber (Eds.), Ceratocystis and ophiostoma: taxonomy, ecology, and pathogenicity (pp. 173–183). St. Paul: American Phytopathological Society Press.Google Scholar
  35. Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lee, D. H., Roux, J., Wingfield, B. D., & Wingfield, M. J. (2015). Variation in growth rates and aggressiveness of naturally occurring self‐fertile and self‐sterile isolates of the wilt pathogen Ceratocystis albifundus. Plant Pathology, 64(5), 1103–1109.CrossRefGoogle Scholar
  37. Lombaert, E., Guillemaud, T., Cornuet, J. M., Malausa, T., Facon, B., & Estoup, A. (2010). Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS One, 5(3), e9743.PubMedPubMedCentralCrossRefGoogle Scholar
  38. McDonald, B. A. (1997). The population genetics of fungi: tools and techniques. Phytopathology, 87(4), 448–453.PubMedCrossRefGoogle Scholar
  39. Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20(22), 6115–6116.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Morris, M. J., Wingfield, M. J., & Beer, C. D. (1993). Gummosis and wilt of Acacia mearnsii in South Africa caused by Ceratocystis fimbriata. Plant Pathology, 42(5), 814–817.CrossRefGoogle Scholar
  41. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323.CrossRefGoogle Scholar
  42. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590.PubMedPubMedCentralGoogle Scholar
  43. Nielsen, R., Tarpy, D. R., & Reeve, H. K. (2003). Estimating effective paternity number in social insects and the effective number of alleles in a population. Molecular Ecology, 12(11), 3157–3164.PubMedCrossRefGoogle Scholar
  44. Nkuekam, G. K., Barnes, I., Wingfield, M. J., & Roux, J. (2009). Distribution and population diversity of Ceratocystis pirilliformis in South Africa. Mycologia, 101(1), 17–25.CrossRefGoogle Scholar
  45. Panconesi, A. (1999). Canker stain of plane trees: a serious danger to urban plantings in Europe. Journal of Plant Pathology, 81, 3–15.Google Scholar
  46. Pariaud, B., Ravigné, V., Halkett, F., Goyeau, H., Carlier, J., & Lannou, C. (2009). Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology, 58(3), 409–424.CrossRefGoogle Scholar
  47. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ploetz, R. C., Hulcr, J., Wingfield, M. J., & De Beer, Z. W. (2013). Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Disease, 97(7), 856–872.CrossRefGoogle Scholar
  49. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.PubMedPubMedCentralGoogle Scholar
  50. Ribeiro, I. J. A., Fumikoito, M., Paradela Filho, O., & Castro, J. L. D. (1988). Gummosis of Acacia decurrens Willd. caused by Ceratocystis fimbriata Ell. & Halst. Bragantia, 47(1), 71–74.CrossRefGoogle Scholar
  51. Rius, M., & Darling, J. A. (2014). How important is intraspecific genetic admixture to the success of colonising populations? Trends in Ecology & Evolution, 29(4), 233–242.CrossRefGoogle Scholar
  52. Robert, S., Ravigne, V., Zapater, M. F., Abadie, C., & Carlier, J. (2012). Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen Mycosphaerella fijiensis. Molecular Ecology, 21(5), 1098–1114.PubMedCrossRefGoogle Scholar
  53. Roux, J., & Wingfield, M. J. (2009). Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. Southern Forests: a Journal of Forest Science, 71(2), 115–120.CrossRefGoogle Scholar
  54. Roux, J., & Wingfield, M. J. (2013). Ceratocystis species on the African continent, with particular reference to C. albifundus, an African species in the C. fimbriata sensu lato species complex. In K. A. Seifert, Z. W. de Beer, & M. J. Wingfield (Eds.), The ophiostomatoid fungi: Expanding frontiers. CBS biodiversity (Vol. 12, pp. 131–138). Utrecht: CBS-KNAW Fungal Biodiversity Centre, CBS.Google Scholar
  55. Roux, J., Wingfield, M. J., Bouillet, J. P., Wingfield, B. D., & Alfenas, A. C. (2000). A serious new wilt disease of Eucalyptus caused by Ceratocystis fimbriata in Central Africa. Forest Pathology, 30(3), 175–184.CrossRefGoogle Scholar
  56. Roux, J., Coutinho, T. A., Mujuni Byabashaija, D., & Wingfield, M. J. (2001). Diseases of plantation Eucalyptus in Uganda: research in action. South African Journal of Science, 97, 16–18.Google Scholar
  57. Roux, J., Van Wyk, M., Hatting, H., & Wingfield, M. J. (2004). Ceratocystis species infecting stem wounds on Eucalyptus grandis in South Africa. Plant Pathology, 53(4), 414–421.CrossRefGoogle Scholar
  58. Roux, J., Heath, R. N., Labuschagne, L., Nkuekam, G. K., & Wingfield, M. J. (2007). Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. Forest Pathology, 37(5), 292–302.CrossRefGoogle Scholar
  59. Santini, A., & Capretti, P. (2000). Analysis of the Italian population of Ceratocystis fimbriata f. sp. platani using RAPD and minisatellite markers. Plant Pathology, 49(4), 461–467.CrossRefGoogle Scholar
  60. Santini, A., Ghelardini, L., Pace, C. D., Desprez‐Loustau, M. L., Capretti, P., Chandelier, A., et al. (2013). Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist, 197(1), 238–250.PubMedCrossRefGoogle Scholar
  61. Seifert, K. A., de Beer, Z. W., & Wingfield, M. J. (2013). The ophiostomatoid fungi: Expanding frontiers. CBS biodiversity (Vol. 12). Utrecht: CBS-KNAW Fungal Biodiversity Centre, CBS.Google Scholar
  62. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5, 3–55.CrossRefGoogle Scholar
  63. Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139(1), 457–462.PubMedPubMedCentralGoogle Scholar
  64. Slippers, B., Stenlid, J., & Wingfield, M. J. (2005). Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends in Ecology & Evolution, 20(8), 420–421.CrossRefGoogle Scholar
  65. Soulioti, N., Tsopelas, P., & Woodward, S. (2015). Platypus cylindrus, a vector of Ceratocystis platani in Platanus orientalis stands in Greece. Forest Pathology, 45(5), 367–372.CrossRefGoogle Scholar
  66. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.PubMedCrossRefGoogle Scholar
  67. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758–771.PubMedCrossRefGoogle Scholar
  68. Steimel, J., Engelbrecht, C. J. B., & Harrington, T. C. (2004). Development and characterization of microsatellite markers for the fungus Ceratocystis fimbriata. Molecular Ecology Notes, 4(2), 215–218.CrossRefGoogle Scholar
  69. Stoddart, J. A., & Taylor, J. F. (1988). Genotypic diversity: estimation and prediction in samples. Genetics, 118(4), 705–711.PubMedPubMedCentralGoogle Scholar
  70. Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100.PubMedCrossRefGoogle Scholar
  71. Szpiech, Z. A., Jakobsson, M., & Rosenberg, N. A. (2008). ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 24(21), 2498–2504.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Tarigan, M., Roux, J., Van Wyk, M., Tjahjono, B., & Wingfield, M. J. (2011). A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. South African Journal of Botany, 77(2), 292–304.CrossRefGoogle Scholar
  73. Taylor, J. W., Jacobson, D. J., & Fisher, M. C. (1999). The evolution of asexual fungi: reproduction, speciation and classification. Annual Review of Phytopathology, 37(1), 197–246.PubMedCrossRefGoogle Scholar
  74. van Wyk, M., Roux, J., Barnes, I., Wingfield, B. D., & Wingfield, M. J. (2006). Molecular phylogeny of the Ceratocystis moniliformis complex and description of C. tribiliformis sp. nov. Fungal Diversity, 21, 181–201.Google Scholar
  75. van Wyk, M., Roux, J., Nkuekam, G. K., Wingfield, B. D., & Wingfield, M. J. (2012). Ceratocystis eucalypticola sp. nov. from Eucalyptus in South Africa and comparison to global isolates from this tree. IMA Fungus, 3(1), 45–58.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wingfield, M. J., de Beer, C., Visser, C., & Wingfield, B. D. (1996). A new Ceratocystis species defined using morphological and ribosomal DNA sequence comparisons. Systematic and Applied Microbiology, 19(2), 191–202.CrossRefGoogle Scholar
  77. Wingfield, M. J., Slippers, B., & Wingfield, B. D. (2010). Novel associations between pathogens, insects and tree species threaten world forests. New Zealand Journal of Forestry Science, 40, S95–S103.Google Scholar
  78. Wingfield, B. D., van Wyk, M., Roos, H., & Wingfield, M. J. (2013a). Ceratocystis: emerging evidence for discrete generic boundaries. In K. A. Seifert, Z. W. de Beer, & M. J. Wingfield (Eds.), The ophiostomatoid fungi: Expanding frontiers CBS biodiversity (Vol. 12, pp. 57–74). Utrecht: CBS-KNAW Fungal Biodiversity Centre, CBS.Google Scholar
  79. Wingfield, M. J., Roux, J., Wingfield, B. D., & Slippers, B. (2013b). Ceratocystis and Ophiostoma: international spread, new associations and plant health. In K. A. Seifert, Z. W. de Beer, & M. J. Wingfield (Eds.), The ophiostomatoid fungi: Expanding frontiers CBS biodiversity (Vol. 12, pp. 191–200). Utrecht: CBS-KNAW Fungal Biodiversity Centre, CBS.Google Scholar
  80. Wingfield, M. J., Brockerhoff, E. G., Wingfield, B. D., & Slippers, B. (2015). Planted forest health: the need for a global strategy. Science, 349(6250), 832–836.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • D. H. Lee
    • 1
  • J. Roux
    • 2
  • B. D. Wingfield
    • 3
  • I. Barnes
    • 3
  • M. J. Wingfield
    • 1
  1. 1.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.Department of Plant Science, FABIUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Genetics, FABIUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations