Advertisement

European Journal of Plant Pathology

, Volume 145, Issue 4, pp 901–913 | Cite as

Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection

  • F. Waliyar
  • K. Vijay Krishna Kumar
  • M. Diallo
  • A. Traore
  • U. N. Mangala
  • H. D. Upadhyaya
  • H. SudiniEmail author
Article

Abstract

Aflatoxin contamination in groundnut by Aspergillus flavus has assumed global significance and is considered a potential threat to human and animal health. The present study focused on the screening and identification of stable and reliable resistance sources to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core germplasm accessions. Field studies were conducted during 2008 and 2009 in a randomized complete block design (RCBD) with three replications. Superior accessions (n = 34) were selected and screened during 2010 and 2011 in a Lattice design with three replications. Seven best accessions with <1 μg kg−1 aflatoxin B1 levels were further selected and screened during 2012 and 2013. Based on the evaluation in 2008 and 2009, four accessions had aflatoxin contamination within 4 μg kg−1, 50 accessions within 10 μg kg−1, 66 accessions within 15 μg kg−1, and 75 accessions within 20 μg kg−1. Of the 34 selected accessions evaluated in 2010 and 2011, eight accessions had <1 μg kg−1. The analysis of 34 accessions over a period of four years from 2008 to 2011 indicated that the mean toxin levels ranged from 0.9 to 10.3 μg kg−1. In total, 31 accessions had less aflatoxin accumulation than the resistant check, 55–437. The seven best accessions, ICGs 13,603, 1415, 14,630, 3584, 5195, 6703 and 6888, over six years (2008–2013) consistently accumulated very low levels of aflatoxin (<4 μg kg−1). These seven accessions could be potential sources for understanding the resistant mechanisms and can be further used in developing resistant cultivars or introgressing resistance in popular released varieties.

Keywords

Groundnut Aflatoxins Aspergillus flavus Mini core collection Resistance 

Notes

Acknowledgments

We are thankful to CGIAR Consortium for the partial financial support rendered through CGIAR Research Program on Grain Legumes. ICRISAT is a member of the CGIAR Consortium.

References

  1. Anderson, W. F., Holbrook, C. C., & Culbreath, A. K. (1996a). Screening of the peanut core collection for resistance to tomato spotted wilt virus. Peanut Science, 23, 57–61.CrossRefGoogle Scholar
  2. Anderson, W. F., Holbrook, C. C., & Wilson, D. M. (1996b). Development of greenhouse screening for resistance to Aspergillus parasiticus infection and pre-harvest aflatoxin contamination in peanut. Mycopathologia, 135, 115–118.CrossRefPubMedGoogle Scholar
  3. Anderson, W. F., Holbrook, C. C., Wilson, D. M., & Matheron, M. E. (1995). Evaluation of pre harvest aflatoxin contamination in several potentially resistant peanut genotypes. Peanut Science, 22, 29–32.CrossRefGoogle Scholar
  4. Arunyanark, A., Jogloy, S., Wongkaew, S., Akksaeng, C., Vorasoot, N., Kesmala, T., & Patanothai, A. (2010). Heritability of aflatoxin resistance traits and correlation with drought tolerance traits in peanut. Field Crops Research, 117, 258–264.CrossRefGoogle Scholar
  5. Barro, N., Ouattara, C. A., Nikiema, P. A., Ouattara, A. S., & Traore, A. S. (2002). Microbial quality assessment of some street food widely consumed in Ouagadougou, Burkina Faso. Santé, 12, 369–374.PubMedGoogle Scholar
  6. Chamberlin, K. D., & Melouk, H. A. (2011). Screening of the ICRISAT mini-core collection for possible Sclerotinia blight resistance and oleic acid composition. Proceedings of the American Peanut Research and Education Society, 43, 48–49.Google Scholar
  7. Craufurd, P. Q., Prasad, P. V. V., Waliyar, F., & Taheri, A. (2006). Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger. Field Crops Research, 98, 20–29.CrossRefGoogle Scholar
  8. Franke, M. D., Brennemen, T. B., & Holbrook, C. C. (1999). Identification of resistance to Rhizoctonia limb rot in a core collection of peanut germplasm. Plant Disease, 83, 944–948.CrossRefGoogle Scholar
  9. Girdthai, T., Jogloy, S., Vorasoot, N., Akkasaeng, C., Wongkaew, S., Holbrook, C. C., et al. (2010). Associations between physiological traits for drought tolerance and aflatoxin contamination in peanut genotypes under terminal drought. Plant Breeding, 129, 693–699.CrossRefGoogle Scholar
  10. Guo, B., Yu, J., Holbrook Jr., C., Cleveland, T., Nierman, W. C., & Scully, B. (2009). Strategies in prevention of pre-harvest aflatoxin contamination in peanuts: aflatoxin biosynthesis, genetics and genomics. Peanut Science, 36, 11–20.CrossRefGoogle Scholar
  11. Hamidou, F., Rathore, A., Waliyar, F., & Vadez, V. (2014). Although drought intensity increases aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination. Field Crops Research, 156, 103–110.CrossRefGoogle Scholar
  12. Hell, K., & Mutegi, C. (2011). Aflatoxin control and prevention strategies in key crops of sub-Saharan Africa. African Journal of Microbiology Research, 55, 459–466.Google Scholar
  13. Holbrook, C. C., & Anderson, W. F. (1995). Evaluation of a core collection to identify resistance to late leaf spot in peanut. Crop Science, 35, 1700–1702.CrossRefGoogle Scholar
  14. Holbrook, C. C., Anderson, W. F., & Pittman, R. N. (1993). Selection of a core collection from the U.S. germplasm collection of peanut. Crop Science, 33, 859–861.CrossRefGoogle Scholar
  15. Holbrook, C. C., Guo, B. Z., Wilson, D. M., & Timper, P. (2009). The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Science, 36, 50–53.CrossRefGoogle Scholar
  16. Holbrook, C. C., Kvien, C. K., Rucker, K. S., Wilson, D. M., Hook, J. E., & Matheron, M. E. (2000b). Pre harvest aflatoxin contamination in drought-tolerant and drought-intolerant peanut genotypes. Peanut Science, 27, 45–48.CrossRefGoogle Scholar
  17. Holbrook, C. C., Matheron, M. E., Wilson, D. W., Anderson, W. F., Will, M. E., & Noden, A. J. (1994). Development of a large-scale field screening system for resistance to pre harvest aflatoxin contamination. Peanut Science, 21, 20–22.CrossRefGoogle Scholar
  18. Holbrook, C. C., Stephenson, M. G., & Johnson, A. W. (2000a). Level and geographical distribution of resistance to Meloidogyne arenaria in the U.S. peanut germplasm collection. Crop Science, 40, 1168–1171.CrossRefGoogle Scholar
  19. ICRISAT. (2009). ICRISAT archival report. Sustaining bio-diversity of sorghum, pearl millet, small millets, groundnut, pigeonpea and chickpea for current and future generations. ICRISAT, Patancheru, India. http:// www.icrisat.org/icrisat-archival-reports.htm.
  20. Isleib, T. G., Beute, M. K., Rice, P. W., & Hollowell, J. E. (1995). Screening the core collection for resistance to Cylindrocladium black rot and early leaf spot. Proceedings of the American Peanut Research And Education Society, 27, 25.Google Scholar
  21. Kisyombe, C. T., Beute, M. K., & Payne, G. A. (1985). Field evaluation of peanut genotypes for resistance to infection by Aspergillus parasiticus. Peanut Science, 12, 12–17.CrossRefGoogle Scholar
  22. Knauft, D. A., & Gorbet, D. W. (1989). Genetic diversity among peanut cultivars. Crop Science, 29, 1417–1422.CrossRefGoogle Scholar
  23. Kusuma, V. P., Yugandhar, G., Ajay, B. C., Gowda, M. V. C., & Upadhyaya, H. D. (2007). Identification of sources of multiple disease resistance in groundnut (Arachis hypogaea L.) mini core. In: Proceedings of the National Seminar “Challenges before India”, Hyderabad, India. 29–31 Jan. 2007. Indian Society Of Oilseeds Research, rajendranagar, Hyderabad, India. P. 31-32.Google Scholar
  24. Liao, B., Zhuang, W., Tang, R., Zhang, X., Shan, S., Jiang, H., et al. (2009). Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Science, 36, 21–28.CrossRefGoogle Scholar
  25. Medina, A., Rodriguez, A., & Magan, N. (2014). Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Frontiers in Microbiology, 5, 1–7.CrossRefGoogle Scholar
  26. Mehan, V. K. (1989). Screening groundnuts for resistance to seed invasion by Aspergillus flavus and to aflatoxin production (pp. 323–334). In D. McDonald, & V. K. Mehan (Eds.), Aflatoxin contamination of groundnut. proc. int. workshop, 6–9 Oct. 1987. ICRISAT Center, India. patancheru, A.P. 502 3234, India International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
  27. Monyo, E. S., Njoroge, S. M. C., Coe, R., Osiru, M., Madinda, F., Waliyar, F., et al. (2012). Occurrence and distribution of aflatoxin contamination in groundnuts (Arachis hypogaea L) and population density of Aflatoxigenic Aspergilli in Malawi. Crop Protection, 42, 149–155.CrossRefGoogle Scholar
  28. Nigam, S. N., Waliyar, F., Aruna, R., Reddy, S. V., Lava Kumar, P., Craufurd, P. Q., et al. (2009). Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Science, 36, 42–49.CrossRefGoogle Scholar
  29. Raper, K. B., & Fennel, D. I. (1965). The genus Aspergillus. Williams & Wilkins, Baltimore.Google Scholar
  30. Reddy, S. V., Kiran Mayi, D., Uma Reddy, M., Thirumala Devi, K., & Reddy, D. V. R. (2001). Aflatoxin B1 in different grades of chillies (Capsicum annum) as determined by indirect competitive-ELISA. Food Additives & Contaminants, 18, 553–558.CrossRefGoogle Scholar
  31. Sivakumar, M.V.K. (1986). Climate of Niamey. Progress Report no. 1. B.P. 12404, Niamey, Niger: ICRISAT Sahelian Center.Google Scholar
  32. Thakur, R. P., Rao, V. P., Reddy, S. V., & Ferguson, M. (2000). Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and aflatoxin production by Aspergillus flavus. International Arachis Newsletter, 20, 44–46.Google Scholar
  33. Upadhyaya, H. D., Dwivedi, S. L., Vadez, V., Hamidou, F., Singh, S., Varshney, R. K., et al. (2014). Multiple resistant and nutritionally dense germplasm identified from mini core collection in peanut. Crop Science, 54, 679–693.CrossRefGoogle Scholar
  34. Upadhyaya, H. D., Bramel, P. J., Ortiz, R., & Singh, S. (2002b). Developing a mini core of peanut for utilization of genetic resources. Crop Science, 42, 2150–2156.CrossRefGoogle Scholar
  35. Upadhyaya, H. D., Nigam, S.N., Mehan, V.K., & Lenne, J.M. (1997). Aflatoxin contamination of groundnut - prospects of a genetic solution through conventional breeding, (pp. 81–85). In Aflatoxin Contamination Problems in Groundnut in Asia: Proceedings of the First Working Group Meeting, 27–29 May 1996, Ministry of Agriculture and Rural Development, Hanoi, Vietnam (V.K. Mehan and C.LL. Gowda eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
  36. Upadhyaya, H. D., Nigam, S. N., Mehan, V. K., Reddy, A. G. S., & Yellaiah, N. (2001). Registration of Aspergillus flavus seed infection resistant peanut germplasm ICGV 91278, ICGV 91283, and ICGV 91284. Crop Science, 41, 559–600.Google Scholar
  37. Upadhyaya, H. D., Nigam, S. N., & Thakur, R. P. (2002a). Genetic enhancement for resistance to aflatoxin contamination in groundnut. In F. Waliyar, & M. Adomou (Eds.), Summary proceedings of the 7th ICRISAT regional groundnut meeting for Western and Central Africa, (6–8 December 2000, Cotonou, Benin) (pp. 29–36). Patancheru, India: ICRISAT.Google Scholar
  38. Upadhyaya, H. D., Nigam, S. N., & Waliyar, F. (2004). Aflatoxin contamination of groundnut: conventional breeding for resistance. In J. Robens (Ed.), Proceedings of the 3rd fungal genomics, 4th fumonisin, and 16th aflatoxin elimination workshops (13–15 October 2003, Savannah, Georgia, USA) (p. 55). ARS, Beltsville, Maryland: USDA.Google Scholar
  39. Upadhyaya, H. D., Ortiz, R., Bramel, P. J., & Singh, S. (2003). Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genetic Resources and Crop Evolution, 50, 139–148.CrossRefGoogle Scholar
  40. Upadhyaya, H. D., Yadav, D., Dronavalli, N., Gowda, C. L. L., & Singh, S. (2010). Mini core germplasm collections for infusing genetic diversity in plant breeding programs. Electronic Journal of Plant Breeding, 1, 1294–1309.Google Scholar
  41. Utomo, S.D., Anderson, W.F., Wynne, J.C., Beute, M.K., Hagler, Jr. W.M., & Payne, G.A. (1990). Estimates of heritability and correlation among three mechanisms of resistance to Aspergillus parasiticus in peanut. Proc. Amer. Peanut Res. and Educ. Soc. 22:26. (abstr.).Google Scholar
  42. Vadez, V., Krishnamurthy, L., Serraj, R., Gaur, P. M., Upadhyaya, H. D., Hoisington, D. A., et al. (2007). Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at reproductive stages. Field Crops Research, 104, 123–129.CrossRefGoogle Scholar
  43. Wagacha, J. M., & Muthomi, J. W. (2008). Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. International Journal of Food Microbiology, 124, 1–12.CrossRefPubMedGoogle Scholar
  44. Waliyar, F., & Bockelee-Morvan, A. (1989). Aflatoxin contamination of groundnut: ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). Proceedings of the International Workshop, 6–9 Oct 1987, ICRISAT Center, Patancheru, A.P. 502324, India.Google Scholar
  45. Waliyar, F., Ba, A., Hassan, H., Bonkongou, S., & Bosc, J. P. (1994). Sources of resistance to Aspergillus flavus and aflatoxin contamination in groundnut genotypes in West Africa. Plant Disease, 78, 704–708.CrossRefGoogle Scholar
  46. Waliyar, F., Kumar, P. L., Ntare, B. R., Diarra, B., & Kodio, O. (2008). Pre and post-harvest management of aflatoxin contamination in peanuts. In J. F. Leslie et al. (Eds.), Mycotoxins: detection methods, management, public health and agricultural trade. Wallingford: CABI.Google Scholar
  47. Waliyar, F., Traore, D., Fatondji, D., & Ntare, B. R. (2003). Effect of irrigation interval, planting date and cultivar on Aspergillus flavus and aflatoxin contamination of peanut in a sandy soil of Niger. Peanut Science, 30, 79–84.CrossRefGoogle Scholar
  48. Waliyar, F., Umeh, V. C., Traore, A., Osiru, M., Ntare, B. R., Diarra, B., et al. (2015b). Prevalence and distribution of aflatoxin contamination in groundnut (Arachis hypogaea L.) in Mali, West Africa. Crop Protection, 70, 1–7.CrossRefGoogle Scholar
  49. Waliyar, F., Osiru, M., Ntare, B. R., Vijay Krishna Kumar, K., Sudini, H., Traore, A., et al. (2015a). Post-harvest management of aflatoxin contamination in groundnut. World Mycotoxin Journal, 8(2), 245–252.CrossRefGoogle Scholar
  50. West, L. T., Wilding, L. P., Landeck, J. K., & Calhoun, F. G. (1984). Soil survey of the ICRISAT Sahelian Centre, Niger, West Africa. Soil and Crop Science Department. College Station, TX, USA and ICRISAT, Patancheru, India: Texas A & M University.Google Scholar
  51. Wild, C. P., & Gong, Y. Y. (2010). Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis, 31, 71–82.CrossRefPubMedGoogle Scholar
  52. Williams, J. H., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M., & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences and interventions. American Journal of Clinical Nutrition, 80, 1106–1122.PubMedGoogle Scholar
  53. Wilson, J. S., & Otsuki, T. (2001). Global trade and food safety: winners and losers in a fragmented system. In World Bank working paper 2689 (October 2001). Washington DC: USA.Google Scholar
  54. Yugandhar, G. (2005). Evaluation of mini core set of germplasm in groundnut (Arachis hypogaea L.), M. Dharwad, India: Sc. thesis. University of Agricultural Sciences.Google Scholar
  55. Zambettakis, C., Waliyar, F., Bockelee-Morvan, & de Pins, O. (1981). Results of four years of research on resistance of groundnut varieties to Aspergillus flavus. Oleagineux, 36, 377–385.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • F. Waliyar
    • 1
  • K. Vijay Krishna Kumar
    • 2
  • M. Diallo
    • 3
  • A. Traore
    • 1
  • U. N. Mangala
    • 2
  • H. D. Upadhyaya
    • 2
  • H. Sudini
    • 2
    Email author
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)BamakoMali
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  3. 3.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)NiameyNiger

Personalised recommendations