European Journal of Plant Pathology

, Volume 145, Issue 1, pp 125–137 | Cite as

Effects of nitrogen nutrition on disease development caused by Acidovorax citrulli on melon foliage

  • Naama Zimerman-Lax
  • Moshe Shenker
  • Dafna Tamir-Ariel
  • Rafael Perl-Treves
  • Saul BurdmanEmail author


Bacterial fruit blotch (BFB) of cucurbits, caused by the seed-borne bacterium Acidovorax citrulli, is a destructive disease that threatens the melon and watermelon industries worldwide. The available means to manage the disease are very limited and there are no reliable sources of BFB resistance. Mineral nutrition has marked effects on plant diseases. To the best of our knowledge, no studies reporting effects of mineral nutrition on BFB severity have been reported to date. In the present study we assessed the influence of nitrogen nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants under greenhouse conditions. Our results show that nitrogen fertilization, based on nitrate only, led to reduced disease severity and bacterial numbers in melon leaves, as compared with two combinations of nitrate and ammonium. No consistent effect of nitrogen nutrition on expression of several plant defense-associated transcripts was found, except for hydroperoxide lyase (HPL), which upon inoculation was repressed to a greater extent under the “nitrate-only” nitrogen regime compared with combined nitrate and ammonium. Reducing BFB severity and A. citrulli establishment in the plant foliage are of particular importance since establishment of the pathogen during the growing season is assumed to increase the incidence of fruit infection, leading to serious yield losses. Further research is needed to elucidate the mechanisms by which nitrogen nutrition influences BFB development, and to assess the effects of nitrogen as well as other minerals on the disease under field conditions.


Acidovorax citrulli Cucumis melo Bacterial fruit blotch Nutrition Nitrogen 



This work was funded by the Agriculture, Environment and Natural Resources Center of the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem.


  1. Almagro, L., Ros, L. V. G., Belchi-Navarro, S., Bru, R., Barcelo, A. R., & Pedreno, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60, 377–390.CrossRefPubMedGoogle Scholar
  2. Bahar, O., & Burdman, S. (2010). Bacterial fruit blotch: a threat to the cucurbit industry. Israel Journal of Plant Sciences, 58, 19–32.CrossRefGoogle Scholar
  3. Bahar, O., Efrat, M., Hadar, E., Dutta, B., Walcott, R. R., & Burdman, S. (2008). New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathology, 57, 754–763.CrossRefGoogle Scholar
  4. Bahar, O., Kritzman, G., & Burdman, S. (2009). Bacterial fruit blotch of melon: screens for disease tolerance and role of seed transmission in pathogenicity. European Journal of Plant Pathology, 123, 71–83.CrossRefGoogle Scholar
  5. Bahar, O., Levi, N., & Burdman, S. (2011). The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration. Molecular Plant-Microbe Interactions, 24, 1040–1050.CrossRefPubMedGoogle Scholar
  6. Bar-Tal, A., Aloni, B., Karni, L., Oserovitz, J., Hazan, A., Itach, M., et al. (2001). Nitrogen nutrition of greenhouse pepper: II. Effects of nitrogen concentration and NO3:NH4 ratio on growth, transpiration, and nutrient uptake. Hortscience, 36, 1252–1259.Google Scholar
  7. Bate, N. J., & Rothstein, S. J. (1998). C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. The Plant Journal, 16, 561–569.CrossRefPubMedGoogle Scholar
  8. Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., et al. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal, 47, 851–863.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burdman, S., & Walcott, R. (2012). Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Molecular Plant Pathology, 13, 805–815.CrossRefPubMedGoogle Scholar
  10. Burdman, S., Kots, N., Kritzman, G., & Kopelowitz, J. (2005). Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Disease, 89, 1339–1347.CrossRefGoogle Scholar
  11. Canaday, C. H., & Wyatt, J. E. (1992). Effects of nitrogen fertilization on bacterial soft rot in two broccoli cultivars, one resistant and one susceptible to the disease. Plant Disease, 76, 989–991.Google Scholar
  12. Chalupowicz, L., Dror, O., Reuven, M., Burdman, S., & Manulis-Sasson, S. (2015). Cotyledons are the main source of secondary spread of Acidovorax citrulli in melon nurseries. Plant Pathology, 64, 528–536.CrossRefGoogle Scholar
  13. Chase, A. R. (1989). Effect of nitrogen and potassium fertilizer rates on severity of Xanthomonas blight of Syngonium podophyllum. Plant Disease, 73, 972–975.Google Scholar
  14. Chase, A. R. (1990). Effect of nitrogen, phosphorus and potassium rates on severity of Xanthomonas leaf spot of Schefflera. Journal of Environmental Horticulture, 8, 74–78.Google Scholar
  15. Datnoff, L. E., Elmer, W. H., & Huber, D. M. (2007). Mineral nutrition and plant disease. St. Paul: American Phytopathological Society Press.Google Scholar
  16. Daudi, A., Cheng, Z., O'Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., et al. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24, 275–287.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deng, W. L., Hamilton-Kemp, T. R., Nielsen, M. T., Andersen, R. A., Collins, G. B., & Hildebrand, D. F. (1993). Effects of 6-carbon aldehydes and alcohols on bacterial proliferation. Journal of Agricultural and Food Chemistry, 41, 506–510.CrossRefGoogle Scholar
  18. Duffy, B. K., & Défago, G. (1999). Macro- and microelement fertilizers influence the severity of Fusarium crown and root rot of tomato in a soilless production system. Hostscience, 34, 287–291.Google Scholar
  19. Dutta, B., Sanders, H., Langston, D. B., Booth, C., Smith, S., & Gitaitis, R. D. (2014). Long-term survival of Acidovorax citrulli in citron melon (citrullus lanatus var. citroides) seeds. Plant Pathology, 63, 1130–1137.CrossRefGoogle Scholar
  20. Eckshtain-Levi, N., Munitz, T., Zivanovic, M., Traore, S. M., Spröer, C., Zhao, B., et al. (2014). Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages. Phytopathology, 104, 1152–1162.CrossRefPubMedGoogle Scholar
  21. Elad, Y., Yunis, H., & Volpin, H. (1993). Effect of nutrition on susceptibility of cucumber, eggplant, and pepper crops to Botrytis cinerea. Canadian Journal of Botany, 71, 602–608.CrossRefGoogle Scholar
  22. Elmer, W. H. (1989). Effects of chloride and nitrogen form on growth of asparagus infected by Fusarium spp. Plant Disease, 73, 736–740.Google Scholar
  23. Elmer, W. H. (2000). Comparison of plastic mulch and nitrogen form on the incidence of Verticillium wilt of eggplant. Plant Disease, 84, 1231–1234.Google Scholar
  24. Elmer, W. H., & LaMondia, J. A. (1999). Influence of ammonium sulfate and rotation crops on strawberry black root rot. Plant Disease, 83, 119–123.Google Scholar
  25. Farmer, E. E., Almeras, E., & Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 6, 372–378.CrossRefPubMedGoogle Scholar
  26. Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V. M., et al. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences USA, 109, 11872–11877.CrossRefGoogle Scholar
  27. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.CrossRefPubMedGoogle Scholar
  28. Gomi, K., Yamasaki, Y., Yamamoto, H., & Akimitsu, K. (2003). Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in citrus. Journal of Plant Physiology, 160, 1219–1231.CrossRefPubMedGoogle Scholar
  29. Gupta, K. J., Brotman, Y., Segu, S., Zeier, T., Zeier, J., Presijn, S. T., et al. (2013). The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany, 64, 553–568.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harrison, U. J., & Shew, H. D. (2001). Effects of soil pH and nitrogen fertility on the population dynamics of Thielaviopsis basicola. Plant and Soil, 228, 147–155.Google Scholar
  31. Hildebrand, D. F., Brown, G. C., Jackson, D. M., & Hamilton-Kemp, T. R. (1993). Effects of some leaf-emitted volatile compounds on aphid population increase. Journal of Chemical Ecology, 19, 1875–1887.CrossRefPubMedGoogle Scholar
  32. Holeva, M. C., Karafla, C. D., Glynos, P. E., & Alivizatos, A. S. (2009). First report of natural infection of watermelon plants and fruits by the phytopathogenic bacterium Acidovorax avenae subsp. citrulli in Greece. Phytopathologia Mediterranea, 48, 316.Google Scholar
  33. Hopkins, D. L., & Thompson, C. M. (2002). Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. Hortscience, 37, 924–926.Google Scholar
  34. Hopkins, D. L., Thompson, C. M., & Elmstrom, G. W. (1993). Resistance of watermelon seedling and fruit to the fruit blotch bacterium. Hortscience, 28, 122–123.Google Scholar
  35. Hopkins, D. L., Cucuzza, J. D., & Watterson, J. C. (1996). Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Disease, 80, 529–532.CrossRefGoogle Scholar
  36. Howe, G. A., & Schilmiller, A. L. (2002). Oxylipin metabolism in response to stress. Current Opinion in Plant Biology, 5, 230–236.CrossRefPubMedGoogle Scholar
  37. Huber, D. M., & Haneklaus, S. (2007). Managing nutrition to control plant disease. Landbauforschung Volkenrode, 57, 313–322.Google Scholar
  38. Huber, D. M., & Thompson, A. (2007). Nitrogen and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 31–44). St. Paul: American Phytopathological Society Press.Google Scholar
  39. Jones, J. J. B., & Case, V. W. (1990). Sampling, handling, and analyzing plant tissue samples. In R. L. Westman (Ed.), Soil testing and plant analysis (3rd ed., pp. 389–427). Madison: Soil Science Society of America, Inc.Google Scholar
  40. Kao, C. W., & Ko, W. H. (1986). The role of calcium and microorganisms in suppression of cucumber damping-off caused by Pythium splendens in Hawaiian soil. Phytopathology, 76, 221–225.CrossRefGoogle Scholar
  41. Kirkby, E. A. (1968). Influence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solutions. Soil Science, 105, 133–141.CrossRefGoogle Scholar
  42. Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2005). Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant and Cell Physiology, 46, 1093–1102.CrossRefPubMedGoogle Scholar
  43. Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2006). ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Science, 171, 415–423.CrossRefPubMedGoogle Scholar
  44. Latin, R. C., & Hopkins, D. L. (1995). Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Disease, 79, 761–765.CrossRefGoogle Scholar
  45. Lima, G. S., Assunção, I. P., & de Oliveira, M. A. (1998). Effect of treatment of melon fruits (cucumis melo L.) with different calcium sources on rot caused by Myrothecium roridum. Summa Phytopathologica, 24, 276–279.Google Scholar
  46. Liu, J., Luo, S. Z., Zhang, Q., Wang, Q. H., Chen, J. F., Guo, A. G., et al. (2012a). Tn5 transposon mutagenesis in Acidovorax citrulli for identification of genes required for pathogenicity on cucumber. Plant Pathology, 61, 364–374.CrossRefGoogle Scholar
  47. Liu, X., Li, F., Tang, J., Wang, W., Zhang, F., Wang, G., et al. (2012b). Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PloS One, 7, e50089.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mirik, M., Aysan, Y., & Sahin, F. (2006). Occurrence of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in the Eastern Mediterranean region of Turkey. Plant Disease, 90, 829.CrossRefGoogle Scholar
  49. Munitz, T. (2012). Characterization of type III-secreted effectors of Acidovorax citrulli, the causal agent of bacterial fruit blotch disease of cucurbits. Rehovot: The Hebrew University of Jerusalem, M.Sc thesis.Google Scholar
  50. Palkovics, L., Petroczy, M., Kertesz, B., Nemeth, J., Barsony, C., Mike, Z., et al. (2008). First report of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in Hungary. Plant Disease, 92, 834–835.CrossRefGoogle Scholar
  51. Penninckx, I., Thomma, B., Buchala, A., Metraux, J. P., & Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. The Plant Cell, 10, 2103–2113.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Popović, T., & Ivanović, Ž. (2015). Occurrence of Acidovorax citrulli causing bacterial fruit blotch of watermelon in Serbia. Plant Disease, 99, 886.CrossRefGoogle Scholar
  53. Prabhu, A. S., Fageira, N. K., Berni, R. F., & Rodrigues, F. A. (2007). Phosphorous and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 45–55). St. Paul: American Phytopathological Society Press.Google Scholar
  54. Rahman, M., & Punja, Z. K. (2007). Calcium and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 79–93). St. Paul: American Phytopathological Society Press.Google Scholar
  55. Rane, K. K., & Latin, R. X. (1992). Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Disease, 76, 509–512.CrossRefGoogle Scholar
  56. Reuter, D. J., & Robinson, J. B. (1997). Plant analysis - an interpretation manual (2nd ed., ). Collingwood: CSIRO Publishing.Google Scholar
  57. Sagar, V., & Sugha, S. K. (1998). Effect of soil type and available nutrients on fusarial population and severity of pea root rot. Journal of Mycology and Plant Pathology, 28, 294–299.Google Scholar
  58. Schaad, N. W., Sowell, G., Goth, R. W., Colwell, R. R., & Webb, R. E. (1978). Pseudomonas pseudoalcaligenes subsp. citrulli subsp-nov. International Journal of Systematic Bacteriology, 28, 117–125.CrossRefGoogle Scholar
  59. Schaad, N. W., Postnikova, E., & Randhawa, P. (2003). Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, J. Mansfield, C. E. Morris, J. Murillo, N. W. Schaad, D. E. Stead, G. Surico, & M. S. Ullrich (Eds.), Pseudomonas syringae and related pathogens (pp. 573–581). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  60. Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., et al. (2008). Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Systematic and Applied Microbiology, 31, 434–446.CrossRefPubMedGoogle Scholar
  61. Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.CrossRefPubMedGoogle Scholar
  62. Somodi, G. C., Jones, J. B., Hopkins, D. L., Stall, R. E., Kucharek, T. A., Hodge, N. C., et al. (1991). Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Disease, 75, 1053–1056.CrossRefGoogle Scholar
  63. Tesfaye, M., Silverstein, K. A. T., Nallu, S., Wang, L., Botanga, C. J., Gomez, S. K., et al. (2013). Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PloS One, 8, e58992.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Walcott, R. R., Castro, A. C., Fessehaie, A., & Ling, K. (2006). Progress towards a commercial PCR-based assay for Acidovorax avenae subsp. citrulli. Seed Science and Technology, 34, 101–116.CrossRefGoogle Scholar
  65. Wall, G. C., & Santos, V. M. (1988). A new bacterial disease on watermelon in the Mariana Islands. Phytopathology, 78, 1605.Google Scholar
  66. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., & De Ley, J. (1992). Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. International Journal of Systematic Bacteriology, 42, 107–119.CrossRefPubMedGoogle Scholar
  67. Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas spingae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69, 7343–7353.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhao, B., Ardales, E. Y., Raymundo, A., Bai, J., Trick, H. N., Leach, J. E., et al. (2004). The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Molecular Plant-Microbe Interactions, 17, 771–779.CrossRefPubMedGoogle Scholar
  69. Zvirin, T., Herman, R., Brotman, Y., Denisov, Y., Belausov, E., & Freeman, S. (2010). Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1.2. Plant Pathology, 59, 576–585.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Naama Zimerman-Lax
    • 1
  • Moshe Shenker
    • 2
  • Dafna Tamir-Ariel
    • 1
  • Rafael Perl-Treves
    • 3
  • Saul Burdman
    • 1
    Email author
  1. 1.Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  3. 3.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations