Advertisement

European Journal of Plant Pathology

, Volume 145, Issue 1, pp 71–80 | Cite as

Cryptococcus adeliensis inciting branch canker on stone fruit trees

  • B. Borhani
  • H. Rahimian
Article

Abstract

Stem and branch cankers of stone fruits are among the most destructive diseases throughout stone fruit growing areas of the world, including Iran. Symptoms similar to those produced by Pseudomonas syringae pv. syringae were observed on stone fruit trees in several fruit growing areas in the Khorasan province in North Eastern Iran in 2011 and 2012. The isolates (48) recovered from almost all affected tissues had cream to pinkish, circular, glistening, pasty and convex colonies with entire margins on sucrose nutrient agar (SNA). A number of isolates induced a hypersensitive (HR)-like reaction in tobacco (Nicotiana tabacum) 11 days after infiltration of leaves with a turbid cell suspensions thereof. Pathogenicity of representative isolates (seven of 48) was confirmed by inoculation of peach (Prunus persica) twigs with a lightly turbid cell suspension of each. Blast analysis of the ITS-sequences of representative isolates revealed their 100 % homology with those of Cryptococcus adeliensis isolates present in GenBank. Analysis of fatty acid methyl esters, partial sequences of 26SrRNA and RPB2 as well as their phenotypic characteristics verified the identity of the yeast isolates as C. adeliensis. The stem canker caused by C. adeliensis appears to be a newly emerged disease of stone fruit trees.

Keywords

Yeast Stone fruit Canker Nucleotide sequence analysis Cryptococcus adeliensis 

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1992). Current protocols in molecular biology (vol. I, ). New York: Greene Publishing Associates and Wiley- Interscience.Google Scholar
  2. Ayers, S. H., Rupp, P., & Johnson, W. T. (1919). A study of the alkali-forming bacteria in milk. United States Department of Agriculture Bulletin, 782, 1–39.Google Scholar
  3. Bahar, M., Mojtahedi, H., & Akhiani, A. (1985). Bacterial canker of apricot in Isfahan. Iranian Journal of Plant Pathology, 18, 58–68.Google Scholar
  4. Borhani, B., Rahimian, H., Babaeizad, V., & Zohour, E. (2013). Cryptococcus adeliensis a yeast species inciting stem canker on stone fruit trees. Journal of Plant Pathology, 95, 666(Abstract).Google Scholar
  5. Brandon Matheny, P., Wang, Z., Binder, M., Curtis, J. M., Lim, Y. W., Nilsson, H. R., et al. (2007). Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (basidiomycota, fungi). Molecular Phylogenetics and Evolution, 43, 430–451.CrossRefPubMedGoogle Scholar
  6. Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G., & Statzell-Tallman, A. (2000). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 50, 1351–1371.CrossRefPubMedGoogle Scholar
  7. Fonseca, Á., Boekhout, T., & Fell, J. W. (2011). Cryptococcus vuillemin (1901). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (pp. 1661–1737). London: Elsevier.CrossRefGoogle Scholar
  8. Golubev, W. I., Pfeiffer, I., & Tomashevskaya, M. A. (2008). Cryptococcus pinus sp. nov., an anamorphic basidiomycetous yeast isolated from pine litter. International Journal of Systematic and Evolutionary Microbiology, 58, 1968–1971.CrossRefPubMedGoogle Scholar
  9. Jami, F., Kazempour, M., Elahinia, S., & Khodakaramian, G. (2005). First report of xanthomonas arboricola pv. Pruni on stone fruit trees from Iran. Journal of Phytopathology, 153, 371–372.CrossRefGoogle Scholar
  10. Kurtzman, C. P., Fell, J. W., Boekhout, T., & Robert, V. (2011). Methods for isolation, phenotypic characterization and maintenance of yeasts. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (pp. 87–110). London: Elsevier.CrossRefGoogle Scholar
  11. Kurtzman, C. P., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek, 73, 331–371.CrossRefPubMedGoogle Scholar
  12. Lelliott, R., Billing, E., & Hayward, A. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Microbiology, 29, 470–489.Google Scholar
  13. Libkind, D., Brizzio, S., Ruffini, A., Gadanho, M., van Broock, M., & Sampaio, J. P. (2003). Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek, 84, 313–322.CrossRefPubMedGoogle Scholar
  14. Little, E., Bostock, R., & Kirkpatrick, B. (1998). Genetic characterization of Pseudomonas syringae pv. Syringae strains from stone fruits in California. Applied and Environmental Microbiology, 64, 3818–3823.PubMedPubMedCentralGoogle Scholar
  15. Metcalfe, L., Schmitz, A. A., & Pelka, J. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry, 38, 514–515.CrossRefGoogle Scholar
  16. Rimek, D., Haase, G., Lück, A., Casper, J., & Podbielski, A. (2004). First report of a case of meningitis caused by Cryptococcus adeliensis in a patient with acute myeloid leukemia. Journal of Clinical Microbiology, 42, 481–483.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Schaad, N. W., Jones, J. B., Chun, W. (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria (3rd ed., p. 373). St. Paul: APS Press.Google Scholar
  18. Scorzetti, G., Petrescu, I., Yarrow, D., & Fell, J. W. (2000). Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie Van Leeuwenhoek, 77, 153–157.CrossRefPubMedGoogle Scholar
  19. Shams-Bakhsh, M., & Rahimian, H. (1997). Comparative study of citrus blast agent and bacterial canker of stone fruit agent in Mazandaran. Iranian Journal of Plant Pathology, 33, 132–143.Google Scholar
  20. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  22. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and amplifications (pp. 315–322). San Diego: Academic Press, Inc.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Department of Plant Protection, Faculty of Agronomic SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations