Advertisement

European Journal of Plant Pathology

, Volume 144, Issue 2, pp 297–309 | Cite as

Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight

  • Annalisa Giorgio
  • Pietro Lo Cantore
  • Vellasamy Shanmugaiah
  • Daniela Lamorte
  • Nicola Sante IacobellisEmail author
Article

Abstract

Common bacterial blight, caused by Xanthomonas axonopodis pv. phaseoli and its variety fuscans, leads to important crop loss and, due to limited bactericides availability and effectiveness in agriculture practices, it appears necessary to develop alternative control strategies. The aim of this study was to assess the potential of bacteria isolated from bean rhizosphere to control the above mentioned disease. Sixty out of 162 bean rhizobacteria inhibited the growth in vitro of selected virulent strains of both varieties of X. a. pv. phaseoli and, when applied to seeds before sowing, six of them reduced disease symptoms on bean in in vitro and greenhouse pathogenicity assays. In order to deepen bacteria characterization, the six rhizobacteria were evaluated for lytic enzymes, hydrogen cyanide, ammonia, siderophores, indoles production, for inorganic phosphates solubilisation and environmental adaptability in terms of salinity, pH and temperature gradients variation. Altogether the findings of this study indicate the above six rhizobacteria as potential biocontrol candidates.

Keywords

Common bean Xanthomonas axonopodis pv. phaseoli Biological control agents Pseudomonas spp. Bacillus spp. 

Notes

Acknowledgments

Massimo Zaccardelli, Centro di Ricerca per l’Orticoltura, Consiglio per la Ricerca in Agricoltura, Pontecagnano Faiano, Italy is acknowledged for generously providing Azospirillum brasilense strains.

References

  1. Achouak, W., Sutra, L., Heulin, T., Meyer, J.-M., Fromin, N., Degraeve, S., Christen, R., & Gardan, L. (2000). Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50, 9–18.PubMedCrossRefGoogle Scholar
  2. Alhussaen, K. M. (2012). Effect of soil acidity on diseases caused by Pythium ultimum and Fusarium oxysporum on tomato plants. Journal of Biological Sciences, 12, 416–420.CrossRefGoogle Scholar
  3. Andersson, P. F., Levenfors, J., & Broberg, A. (2012). Metabolites from Pseudomonas brassicacearum with activity against the pink snow mould causing pathogen Microdochium nivale. BioControl, 57, 463–469.CrossRefGoogle Scholar
  4. Asensio-S-Manzanera, C. M., Asensio, C., & Singh, S. P. (2006). Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations. Crop Science, 46, 131–135.CrossRefGoogle Scholar
  5. Askeland, R. A., & Morrison, S. M. (1983). Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 45, 1802–1807.PubMedCentralPubMedGoogle Scholar
  6. Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., & Stepanok, V. V. (2001). Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47, 642–652.PubMedCrossRefGoogle Scholar
  7. Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 11, 557–574.CrossRefGoogle Scholar
  8. Bertagnolli, B. L., Dal Soglio, F. K., & Sinclair, J. B. (1996). Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. Possible correlation with inhibition of growth and biocontrol. Physiological and Molecular Plant Pathology, 48, 145–160.CrossRefGoogle Scholar
  9. Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185, 373–382.PubMedCrossRefGoogle Scholar
  10. Bienfait, H. F. (1989). Prevention of stress in iron metabolism of plants. Acta Botanica Neerlandica, 38, 105–129.CrossRefGoogle Scholar
  11. Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170–177.PubMedCrossRefGoogle Scholar
  12. Cappuccino, J. G., & Sherman, N. (2010). Microbiology, a laboratory manual. California: The Benjamin / Cummings Publishing Co.Google Scholar
  13. Chakraborty, U., Chakraborty, B., & Basnet, M. (2006). Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46, 186–195.PubMedCrossRefGoogle Scholar
  14. Chung, S., Aslam, Z., Kim, S. W., Kim, G. G., Kang, H. S., Ahn, J. W., & Chung, Y. R. (2008). A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathology Journal, 24, 461–468.CrossRefGoogle Scholar
  15. Conti, E., Flaibani, A., O’Regan, M., & Sutherland, I. W. (1994). Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology, 140, 1125–1132.CrossRefGoogle Scholar
  16. Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J. C., Glavina del Rio, T., Dalin, E., Tice, H., Pitluck, S., Chain, P., Malfatti, S., Shin, M., Vergez, L., Schmutz, J., Larimer, F., Land, M., Hauser, L., Kyrpides, N., & Richardson, P. (2008). Complete sequence of Pseudomonas putida W619 EMBL/GenBank/DDBJ databases.Google Scholar
  17. Corrêa, B. O., Schafer, J. T., & Moura, A. B. (2014). Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean. Biological Control, 72, 71–75.CrossRefGoogle Scholar
  18. Eppinger, M., Bunk, B., Johns, M. A., Edirisinghe, J. N., Kutumbaka, K. K., Koenig, S. S. K., Creasy, H. H., Rosovitz, M. J., Riley, D. R., Daugherty, S., Martin, M., Elbourne, L. D. H., Paulsen, I., Biedendieck, R., Braun, C., Grayburn, S., Dhingra, S., Lukyanchuk, V., Ball, B., Ul-Qamar, R., Seibel, J., Bremer, E., Jahn, D., Ravel, J., & Vary, P. S. (2011). Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. Journal of Bacteriology, 193, 4199–4213.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Goodwin, P. H., & Sopher, C. R. (1994). Brown pigmentation of Xanthomonas campestris pv. phaseoli associated with homogentisic acid. Canadian Journal of Microbiology, 40, 28–34.CrossRefGoogle Scholar
  20. Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiology, 26, 192–195.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.PubMedCrossRefGoogle Scholar
  22. Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463–471.PubMedCrossRefGoogle Scholar
  23. Iacobellis, N. S., Shanmugaiah, V., & Lo Cantore, P. (2009). Rhizobacteria for the biological control of common bacterial blight of bean. Journal of Plant Pathology, 91, S4.34.Google Scholar
  24. Jacques, M. A., Josi, K., Darrasse, A., & Samson, R. (2005). Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown Beans. Applied and Environmental Microbiology, 71, 2008–2015.PubMedCentralPubMedCrossRefGoogle Scholar
  25. King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstrating of phycocyanin and fluorescein. Journal of Laboratory and Clinical Medicine, 44, 301–307.PubMedGoogle Scholar
  26. Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Current Microbiology, 4, 317–320.CrossRefGoogle Scholar
  27. Knowles, C. J. (1976). Microorganisms and cyanide. Bacteriology Reviews, 40, 652–680.Google Scholar
  28. Kyoung, J. H., & Kim, S. D. (2005). An antifungal antibiotic purified from Bacillus megaterium KL39, a biocontrol agent of red-pepper phytophthora-blight disease. Journal of Microbiology and Biotechnology, 15, 1001–1010.Google Scholar
  29. Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants (Vol. 2). London: British Society for Plant Pathology & Blackwell.Google Scholar
  30. Lisboa, M. P., Bonatto, D., Bizani, D., Henriques, J. A. P., & Brandelli, A. (2006). Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. International Microbiology, 9, 111–118.PubMedGoogle Scholar
  31. Lo Cantore, P., Lazzaroni, S., Coraiola, M., Dalla Serra, M., Cafarchia, C., Menestrina, G., Evidente, A., & Iacobellis, N. S. (2006). Biological characterization of WLIP produced by Pseudomonas “reactans” NCPPB1311. Molecular Plant-Microbe Interactions, 19, 1113–1120.PubMedCrossRefGoogle Scholar
  32. Lo Cantore, P., Figliuolo, G., & Iacobellis, N. S. (2010). Response of traditional cultivars of the “Fagioli di Sarconi” beans to artificial inoculation with common bacterial blight causal agents. Phytopathologia Mediterranea, 49, 89–94.Google Scholar
  33. Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1, 142–146.CrossRefGoogle Scholar
  34. Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by pseudomonas. Annual Review of Phytopathology, 39, 461–490.PubMedCrossRefGoogle Scholar
  35. Maduell, P., Armengol, G., Llagostera, M., Lindow, S., & Orduz, S. (2007). Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts. Journal of Applied Microbiology, 103, 2593–2600.PubMedCrossRefGoogle Scholar
  36. Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293–319.CrossRefGoogle Scholar
  37. Matsukawa, E., Nakagawa, Y., Iimura, Y., & Hayakawa, M. (2007). A new enrichment method for the selective isolation of streptomycetes from the root surfaces of herbaceous plants. Actinomycetologica, 21, 66–69.CrossRefGoogle Scholar
  38. Miklas, P., Fourie, N., Trapp, D., Larsen, J., Chavarro, R. C., Blair, C., & Gepts, P. (2011). Genetic characterization and molecular mapping gene for resistance to halo blight in common bean. Crop Science, 51, 2439–2448.CrossRefGoogle Scholar
  39. National Research Council. (2010). Toward sustainable agricultural systems in the 21st century. Washington: The National Academies Press.Google Scholar
  40. Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265–270.PubMedCrossRefGoogle Scholar
  41. Nautiyal, C. S., Johri, J. K., & Singh, H. B. (2002). Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescens NBRI2650 in the soil and phytosphere. Canadian Journal of Microbiology, 48, 588–601.CrossRefGoogle Scholar
  42. Nzungize, J. R., Lyumugabe, F., Busogoro, J. P., & Baudoin, J. P. (2012). Pythium root rot of common bean: biology and control methods. Biotechnologie, Agronomie, Société et Environnement, 16, 405–413.Google Scholar
  43. Ongena, M., Jourdan, E., Schäfer, M., Kech, C., Budzikiewicz, H., Luxen, A., & Thonart, P. (2005). Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Molecular Plant-Microbe Interactions, 18, 562–569.PubMedCrossRefGoogle Scholar
  44. Opio, A. F., Allen, D. J., & Teri, J. M. (1996). Pathogenic variation in Xanthomonas campestris pv. phaseoli, the causal agent of common bacterial blight in Phaseolus beans. Plant Pathology, 45, 1126–1133.CrossRefGoogle Scholar
  45. Ortet, P., Barakat, M., Lalaouna, D., Fochesato, S., Barbe, V., Vacherie, B., & Achouak, W. (2011). Complete genome sequence of a beneficial plant root-associated bacterium Pseudomonas brassicacearum. Journal of Bacteriology, 19, 3146.CrossRefGoogle Scholar
  46. Osdaghi, E., Shams-Bakhsh, M., Alizadeh, A., Lak, M. R., & Hatami Maleki, H. (2011). Induction of resistance in common bean by Rhizobium leguminosarum bv. phaseoli and decrease of common bacterial blight. Phytopathologia Mediterranea, 50, 45–54.Google Scholar
  47. Parke, J. L. (1991). Root colonization by indigenous and introduced microorganisms. In D. L. Keister & P. B. Gregan (Eds.), The rhizosphere and plant growth (pp. 33–42). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  48. Perelló, A. E., Moreno, M. V., Mónaco, C., Simón, M. R., & Cordo, C. (2009). Biological control of Septoria tritici blotch on wheat by Trichoderma spp. under field conditions in Argentina. BioControl, 54, 113–122.CrossRefGoogle Scholar
  49. Ramadoss, D., Lakkineni, V. K., Bose, P., Ali, S., & Annapurna, K. (2013). Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus, 2, 1–7.CrossRefGoogle Scholar
  50. Rashid, M., Khalil, S., Ayub, N., Alam, S., & Latif, F. (2004). Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7, 187–196.CrossRefGoogle Scholar
  51. Ross, I. L., Alami, Y., Harvey, P. R., Achouak, W., & Ryder, M. H. (2000). Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66, 1609–1616.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Rudolph, K. (1993). Infection of the plant by Xanthomonas. In J. Swings & E. Civerolo (Eds.), Xanthomonas (pp. 193–264). London: Chapman & Hall.CrossRefGoogle Scholar
  53. Ruggiero, C. E., Boukhalfa, H., Forsythe, J. H., Lack, J. G., Hersman, L. E., & Neu, M. P. (2005). Actinide and metal toxicity to prospective bioremediation bacteria. Environmental Microbiology, 7, 88–97.PubMedCrossRefGoogle Scholar
  54. Saettler, A. W. (1991). Diseases caused by bacteria. In R. Hall (Ed.), Compendium of bean diseases (pp. 29–32). St. Paul: APS Press.Google Scholar
  55. Safronova, V. I., Stepanok, V. V., Engqvist, G. L., Alekseyev, Y. V., & Belimov, A. A. (2006). Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42, 267–272.CrossRefGoogle Scholar
  56. San San Yu, Z. K., Kyaw, E. P., & Lynn, T. M. (2011). Accumulation of ammonia in culture broth by wild-type nitrogen fixing bacterium, Stenotrophomonas maltophilia. International Journal of Applied Biology and Pharmaceutical Technology, 2, 72–77.Google Scholar
  57. Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447–453.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Schroth, M. N., & Hancock, J. G. (1982). Disease-suppressive soil and root-colonizing bacteria. Science, 216, 1376–1381.PubMedCrossRefGoogle Scholar
  59. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.PubMedCrossRefGoogle Scholar
  60. Sikorski, J., Jahr, H., & Wackernagel, W. (2001). The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environmental Microbiology, 3, 176–186.PubMedCrossRefGoogle Scholar
  61. Silva, H. S. A., Romeiro, R. D. S., & Mounteer, A. (2003). Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. Journal of Phytopathology, 151(1), 42–46.CrossRefGoogle Scholar
  62. Teather, R. M., & Wood, P. J. (1982). Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), 777–780.PubMedCentralPubMedGoogle Scholar
  63. Vallet-Gely, I., Novikov, A., Augusto, L., Liehl, P., Bolbach, G., Péchy-Tarr, M., & Lemaitre, B. (2010). Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Applied and Environmental Microbiology, 76, 910–921.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  65. von Tersch, M. A., & Carlton, B. C. (1983). Bacteriocin from bacillus megaterium ATCC 19213: comparative studies with megacin A-216. Journal of Bacteriology, 155, 866–871.Google Scholar
  66. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.PubMedCentralPubMedGoogle Scholar
  67. Weise, T., Kai, M., & Piechulla, B. (2013). Bacterial ammonia causes significant plant growth inhibition. Plos One, 8, 1–7.CrossRefGoogle Scholar
  68. Weller, D. M., & Saettler, A. W. (1978). Rifampin-resistant Xanthomonas phaseoli var. fuscans and Xanthomonas phaseoli: tools for field study of bean blight bacteria. Phytopathology, 68, 778–781.CrossRefGoogle Scholar
  69. Widmer, F., Seidler, R. J., Gillevet, P. M., Watrud, L. S., & Di Giovanni, G. D. (1998). A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Applied and Environmental Microbiology, 64, 2545–2553.PubMedCentralPubMedGoogle Scholar
  70. Zanatta, Z. G., Moura, A. B., Maia, L. C., & Santos, A. S. (2007). Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodis pv. phaseoli). Brazilian Journal of Microbiology, 38, 511–515.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Annalisa Giorgio
    • 1
  • Pietro Lo Cantore
    • 1
  • Vellasamy Shanmugaiah
    • 2
  • Daniela Lamorte
    • 1
  • Nicola Sante Iacobellis
    • 1
    Email author
  1. 1.Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE)Università degli Studi della BasilicataPotenzaItaly
  2. 2.Department of Microbial Technology, School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations