Advertisement

European Journal of Plant Pathology

, Volume 144, Issue 1, pp 155–165 | Cite as

Transcriptional profiling of wheat in response to take-all disease and mechanisms involved in earthworm’s biocontrol effect

  • Ruben Puga-FreitasEmail author
  • Lamia Belkacem
  • Sébastien Barot
  • Michel Bertrand
  • Jean Roger-Estrade
  • Manuel Blouin
Article

Abstract

Take-all disease caused by the soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt) is the most widespread and well-studied root disease of winter wheat. The absence of plant genetic resistance and efficient fungicide against this disease calls for the development of alternative management strategies such as the use of biological control agents. In a greenhouse experiment, we tested the hypothesis that the earthworm Aporrectodea caliginosa can control this plant pathogen by changing soil pH, inducing plant defence mechanisms or improving plant nutrition. Towards this aim, soil chemical properties, plant production, morphology and transcriptome were assessed in the different treatments to characterize the effects of Ggt, earthworm and the interaction between them. Sixty three days after sowing, Ggt was responsible for a strong reduction in fine root proportion and leaf area, and an 82 % decrease in plant total biomass. Earthworms reduced infection rate by 63 % and improved plant growth, which was not significantly different from the no-pathogen control. Neither changes in soil pH, plant defence mechanisms or plant nutrition were proved to be involved in this effect. It was concluded that A. caliginosa was a very efficient biocontrol agent against Ggt and that the mechanism responsible for this biocontrol effect could be associated with microbial community modifications or fungal consumption by earthworms.

Keywords

Aporrectodea caliginosa Gaeumannomyces graminis var. tritici Defence mechanisms Take-all Transcriptome Triticum aestivum (winter wheat) 

Notes

Acknowledgments

This work was supported by AgroParisTech (France). We are very grateful to Damien Marchand for technical assistance and to Germain Meulemans for English language editing. We also thank the INRA IGEPP laboratory (Rennes, France) for providing fungus inoculums.

Supplementary material

10658_2015_759_MOESM1_ESM.pdf (71 kb)
ESM 1 (PDF 71 kb)

References

  1. Bernard, L., Chapuis-Lardy, L., Razafimbelo, T., Razafindrakoto, M., Pablo, A.-L., Legname, E., et al. (2012). Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. The ISME Journal, 6(1), 213–222. doi: 10.1038/ismej.2011.87.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Berrocal-Lobo, M., & Molina, A. (2008). Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science, 13(3), 145–150. doi: 10.1016/j.tplants.2007.12.004.CrossRefPubMedGoogle Scholar
  3. Blouin, M., Zuily-Fodil, Y., Pham-Thi, A. T., Laffray, D., Reversat, G., Pando, A., et al. (2005). Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecology Letters, 8(2), 202–208. doi: 10.1111/j.1461-0248.2004.00711.x.CrossRefGoogle Scholar
  4. Blouin, M., Barot, S., & Roumet, C. (2007). A quick method to determine root biomass distribution in diameter classes. Plant and Soil, 290(1), 371–381. doi: 10.1007/s11104-006-9169-1.CrossRefGoogle Scholar
  5. Bonkowski, M., Griffiths, B. S., & Ritz, K. (2000). Food preferences of earthworms for soil fungi. Pedobiologia, 44(6), 666–676. doi: 10.1078/S0031-4056(04)70080-3.CrossRefGoogle Scholar
  6. Bouché, M. B. (1972). Lombriciens de France: écologie et systématique. Institut national de la recherche agronomique.Google Scholar
  7. Brown, G. G. (1995). How do earthworms affect microfloral and faunal community diversity? Plant and Soil, 170(1), 209–231. doi: 10.1007/BF02183068.CrossRefGoogle Scholar
  8. Brown, G. G., Edwards, C. A., & Brussaard, L. (2004). How earthworms affect plant growth: Burrowing into the mechanisms. In C. A. Edwards (Ed.), Earthworm ecology (2nd ed., pp. 19–49). Boca Raton: CRC Press.Google Scholar
  9. Chapon, A., Guillerm, A. Y., Delalande, L., Lebreton, L., & Sarniguet, A. (2002). Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the Take-all fungus. European Journal of Plant Pathology, 108(5), 449–459. doi: 10.1023/a:1016099707119.CrossRefGoogle Scholar
  10. Christensen, N. W., Powelson, R. L., & Brett, M. (1987). Epidemiology of wheat take-all as influenced by soil pH and temporal changes in inorganic soil N. Plant and Soil, 98(2), 221–230. doi: 10.1007/BF02374825.CrossRefGoogle Scholar
  11. Clapperton, M. J., Lee, N. O., Binet, F., & Conner, R. L. (2001). Earthworms indirectly reduce the effects of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biology and Biochemistry, 33(11), 1531–1538. doi: 10.1016/S0038-0717(01)00071-2.CrossRefGoogle Scholar
  12. Cook, R. J. (2003). Take-all of wheat. Physiological and Molecular Plant Pathology, 62(2), 73–86. doi: 10.1016/s0885-5765(03)00042-0.CrossRefGoogle Scholar
  13. Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus : NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. doi: 10.1093/nar/30.1.207.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Elmer, W. H. (2009). Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Disease, 93(2), 175–179. doi: 10.1094/pdis-93-2-0175.CrossRefGoogle Scholar
  15. Endlweber, K., Krome, K., Welzl, G., Schäffner, A. R., & Scheu, S. (2011). Decomposer animals induce differential expression of defence and auxin-responsive genes in plants. Soil Biology and Biochemistry, 43(6), 1130–1138. doi: 10.1016/j.soilbio.2010.11.013.CrossRefGoogle Scholar
  16. Freeman, J., & Ward, E. (2004). Gaeumannomyces graminis, the take-all fungus and its relatives. Molecular Plant Pathology, 5(4), 235–252. doi: 10.1111/j.1364-3703.2004.00226.x.CrossRefPubMedGoogle Scholar
  17. Friberg, H., Lagerlöf, J., & Rämert, B. (2005). Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems. Biocontrol Science and Technology, 15(7), 641–658. doi: 10.1080/09583150500086979.CrossRefGoogle Scholar
  18. Guilleroux, M., & Osbourn, A. (2004). Gene expression during infection of wheat roots by the “take-all” fungus Gaeumannomyces graminis. Molecular Plant Pathology, 5(3), 203–216. doi: 10.1111/j.1364-3703.2004.00219.x.CrossRefPubMedGoogle Scholar
  19. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13. doi: 10.1093/nar/gkn923.PubMedCentralCrossRefGoogle Scholar
  20. Hume, E. a., Horrocks, A. J., Fraser, P. M., Curtin, D., Meenken, E. D., Chng, S., & Beare, M. H. (2015). Alleviation of take-all in wheat by the earthworm Aporrectodea caliginosa (Savigny). Applied Soil Ecology, 90, 18–25. doi: 10.1016/j.apsoil.2014.12.006.CrossRefGoogle Scholar
  21. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), D109–D114. doi: 10.1093/nar/gkr988.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Lavelle, P., & Spain, A. V. (2001). Soil ecology. Kluwer Academic Publishers.Google Scholar
  23. Ma, W., & Berkowitz, G. A. (2011). Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytologist, 190(3), 566–572. doi: 10.1111/j.1469-8137.2010.03577.x.CrossRefPubMedGoogle Scholar
  24. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19. doi: 10.1016/j.tplants.2005.11.002.CrossRefPubMedGoogle Scholar
  25. Monard, C., Vandenkoornhuyse, P., Le Bot, B., & Binet, F. (2011). Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study. The ISME Journal, 5(6), 1048–1056. doi: 10.1038/ismej.2010.194.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Muscolo, A., Cutrupi, S., & Nardi, S. (1998). IAA detection in humic substances. Soil Biology and Biochemistry, 30(8–9), 1199–1201. doi: 10.1016/S0038-0717(98)00005-4.CrossRefGoogle Scholar
  27. Parkin, T. B., & Berry, E. C. (1999). Microbial nitrogen transformations in earthworm burrows. Soil Biology and Biochemistry, 31(13), 1765–1771. doi: 10.1016/S0038-0717(99)00085-1.CrossRefGoogle Scholar
  28. Parmelee, R. W., & Crossley, D. A. J. (1988). Earthworm production and role in the nitrogen cycle of a no-tillage agroecosystem on the Georgia Piedmont. Pedobiologia, 32, 353–361.Google Scholar
  29. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308–316. doi: 10.1038/nchembio.164.CrossRefPubMedGoogle Scholar
  30. Ping, L., & Boland, W. (2004). Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9(6), 263–266. doi: 10.1016/j.tplants.2004.04.008.CrossRefPubMedGoogle Scholar
  31. Puga-Freitas, R., & Blouin, M. (2015). A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 114, 104–116. doi: 10.1016/j.envexpbot.2014.07.006.CrossRefGoogle Scholar
  32. Puga-Freitas, R., Barot, S., Taconnat, L., Renou, J.-P., & Blouin, M. (2012). Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS ONE, 7(12), e49504. doi: 10.1371/journal.pone.0049504.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., & Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, 55(398), 803–813. doi: 10.1093/jxb/erh085.CrossRefPubMedGoogle Scholar
  34. Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3(4), 458–475. doi: 10.3390/plants3040458.CrossRefGoogle Scholar
  35. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annual Review of Phytopathology, 49(1), 317–343. doi: 10.1146/annurev-phyto-073009-114447.CrossRefPubMedGoogle Scholar
  36. Sanguin, H., Sarniguet, A., Gazengel, K., Moënne-Loccoz, Y., & Grundmann, G. L. (2009). Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytologist, 184(3), 694–707. doi: 10.1111/j.1469-8137.2009.03010.x.CrossRefPubMedGoogle Scholar
  37. Shan, J., Liu, J., Wang, Y., Yan, X., Guo, H., Li, X., & Ji, R. (2013). Digestion and residue stabilization of bacterial and fungal cells, protein, peptidoglycan, and chitin by the geophagous earthworm Metaphire guillelmi. Soil Biology and Biochemistry, 64, 9–17. doi: 10.1016/j.soilbio.2013.03.009.CrossRefGoogle Scholar
  38. Stephens, P. M., & Davoren, C. W. (1995). Effect of the lumbricid earthworm Aporrectodea trapezoides on wheat grain yield in the field, in the presence or absence of Rhizoctonia solani and Gaeumannomyces graminis var. tritici. Soil Biology and Biochemistry, 28(4–5), 561–567. doi: 10.1016/0038-0717(95)00166-2.Google Scholar
  39. Stephens, P. M., Davoren, C. W., Doube, B. M., & Ryder, M. H. (1994a). Ability of the lumbricid earthworms Aporrectodea rosea and Aporrectodea trapezoides to reduce the severity of take-all under greenhouse and field conditions. Soil Biology and Biochemistry, 26(10), 1291–1297. doi: 10.1016/0038-0717(94)90209-7.CrossRefGoogle Scholar
  40. Stephens, P. M., Davoren, C. W., Doube, B. M., & Ryder, M. H. (1994b). Ability of the earthworms Aporrectodea rosea and Aporrectodea trapezoides to increase plant growth and the foliar concentration of elements in wheat (Triticum aestivum cv. spear) in a sandy loam soil. Biology and Fertility of Soils, 18(2), 150–154. doi: 10.1007/BF00336462.CrossRefGoogle Scholar
  41. Team, R. D. C. (2008). R: A language and environment for statistical computing. Vienna, Austria.Google Scholar
  42. Torres, M. A., Dangl, J. L., & Jones, J. D. G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences, 99(1), 517–522. doi: 10.1073/pnas.012452499.CrossRefGoogle Scholar
  43. Van der Ent, S., van Wees, S. C. M. M., & Pieterse, C. M. J. J. (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 70(13–14), 1581–1588. doi: 10.1016/j.phytochem.2009.06.009.PubMedGoogle Scholar
  44. Van Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443–448. doi: 10.1016/j.pbi.2008.05.005.CrossRefPubMedGoogle Scholar
  45. Von Arx, J. A., & Olivier, D. L. (1952). The taxonomy of Ophiobolus graminis Sacc. Transactions of the British Mycological Society, 35(1), 29–33. doi: 10.1016/S0007-1536(52)80005-1.CrossRefGoogle Scholar
  46. Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. a. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561–580. doi: 10.1111/j.1364-3703.2007.00417.x.CrossRefPubMedGoogle Scholar
  47. Wolfarth, F., Schrader, S., Oldenburg, E., Weinert, J., & Brunotte, J. (2011). Earthworms promote the reduction of Fusarium biomass and deoxynivalenol content in wheat straw under field conditions. Soil Biology and Biochemistry, 43(9), 1858–1865. doi: 10.1016/j.soilbio.2011.05.002.CrossRefGoogle Scholar
  48. Wurst, S. (2010). Effects of earthworms on above- and below ground herbivores. Applied Soil Ecology, 45(3), 123–130. doi: 10.1016/j.apsoil.2010.04.005.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Ruben Puga-Freitas
    • 1
    Email author
  • Lamia Belkacem
    • 2
  • Sébastien Barot
    • 3
  • Michel Bertrand
    • 2
    • 4
  • Jean Roger-Estrade
    • 2
    • 4
  • Manuel Blouin
    • 1
  1. 1.Université Paris-Est Créteil Val de MarneUMR 7618 Institute of Ecology and Environmental Sciences of Paris (IEES Paris)Créteil cedexFrance
  2. 2.INRA UMR211 AgronomieThiverval-GrignonFrance
  3. 3.IRD, Ecole Normale SupérieureUMR 7618 Institute of Ecology and Environmental Sciences of Paris (IEES Paris)Paris cedex 5France
  4. 4.AgroParisTech UMR 211 AgronomieThiverval-GrignonFrance

Personalised recommendations