European Journal of Plant Pathology

, Volume 142, Issue 4, pp 759–770 | Cite as

The molecular epidemiology of bois noir grapevine yellows caused by ‘Candidatus Phytoplasma solani’ in the Republic of Macedonia

  • Biljana Atanasova
  • Miljana Jakovljević
  • Dušan Spasov
  • Jelena Jović
  • Milana Mitrović
  • Ivo Toševski
  • Tatjana Cvrković
Article

Abstract

Bois noir (BN), which is induced by ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’), is an important grapevine yellows disease that causes severe damage in viticultural regions throughout the Euro-Mediterranean basin. An epidemiological survey to determine potential insect vectors and the primary reservoir plants of BN phytoplasma in Macedonian vineyards was undertaken between 2012 and 2013 in the southeastern part of the country. A study on the species diversity from the suborder Auchenorrhycha revealed the prevalence of the principal vector of ‘Ca. P. solani’, which is the planthopper Hyalesthes obsoletus. Reptalus panzeri, which is the second-most documented BN vector, was not recorded in Macedonian vineyards. Three leafhopper species, namely Psammotettix alienus, Artianus manderstjernii and Euscelis incisus, were also widespread in the BN-affected vineyards, but only H. obsoletus tested positive for ‘Ca. P. solani’. Molecular characterizations were performed by the sequencing and/or RFLP typing of tuf, vmp1 and stamp genes, and the results were used to gain detailed insight into the molecular diversity of the ‘Ca. P. solani’ strains associated with grapevines, tentative reservoir plants (Urtica dioica and Convolvulus arvensis) and the H. obsoletus associated with these plants. Among the 91 ‘Ca. P. solani’ strains detected in diverse plant and insect hosts, three tuf, five vmp1 and 11 distinct stamp genotypes were identified. Twelve comprehensive genotypes of ‘Ca. P. solani’ were detected according to the tuf/vmp1/stamp genotyping. The highest diversity of genotypes was detected among the strains from H. obsoletus individuals associated with U. dioica, of which the most frequent genotype was tuf-ab/V18/M1 (43 %). The tuf-b/V2-TA/STOL comprehensive genotype was found in 33 % of naturally infected grapevines. Two ‘Ca. P. solani’ genotypes were associated with U. dioica, namely (i) tuf-ab/V18/M1 (60 %) and tuf-a/V3/M4 (40 %), and only one genotype (tuf-b/V2-TA/Rqg50) was associated with C. arvensis.

Keywords

Grapevine yellows Molecular epidemiology Hyalesthes obsoletus Stamp variability Stolbur 

References

  1. Angelini, E., Clair, D., Borgo, M., Bertaccini, A., & Boudon-Padieu, E. (2001). Flavescence dorée in France and Italy - occurence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis, 40, 79–86.Google Scholar
  2. Aryan, A., Brader, G., Mörtel, J., Pastar, M., & Riedle-Bauer, M. (2014). An abundant ‘Candidatus Phytoplasma solani’ tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. European Journal of Plant Pathology, 140, 213–227.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Biedermann, R., & Niedringhaus, R. (2004). Die Zikaden Deutschlands - Bestimmungstafeln für alle Arten. Scheessel: WABV.Google Scholar
  4. Cimerman, A., Pacifico, D., Salar, P., Marzachì, C., & Foissac, X. (2009). Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Applied and Environmental Microbiology, 75, 2951–2957.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Clair, D., Larrue, J., Aubert, G., Gillet, J., Cloquemin, G., & Boudon-Padieu, E. (2003). A multiplex nested-PCR assay for sensitive and simultaneous detection and direct identification of phytoplasma in the Elm yellows group and Stolbur group and its use in survey of grapevine yellows in France. Vitis, 42, 151–157.Google Scholar
  6. Cvrković, T., Jović, J., Mitrović, M., Krstić, O., & Toševski, I. (2014). Experimental and molecular evidence of Reptalus panzeri as a natural vector of bois noir. Plant Pathology, 63, 42–53.CrossRefGoogle Scholar
  7. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.PubMedCrossRefGoogle Scholar
  8. Fabre, A., Danet, J. L., & Foissac, X. (2011). The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 472, 37–41.PubMedCrossRefGoogle Scholar
  9. Fialová, R., Válová, P., Balakishiyeva, G., Danet, J. L., Šafárová, D., Foissac, X., & Navrátil, M. (2009). Genetic variability of stolbur phytoplasma in annual crop and wild plant species in south Moravia. Journal of Plant Pathology, 91, 411–416.Google Scholar
  10. Foissac, X., Carle, P., Fabre, A., Salar, P., Danet, J. L. & STOLBUR-EUROMED consortium. (2013). ‘Candidatus Phytoplasma solani’ genome project and genetic diversity in the Euro-Mediterranean basin. Invited conference. In Third European Bois Noir Workshop (pp. 11–13). E. Torres, A. Lavina, A. Batlle (Eds.). Barcelona.Google Scholar
  11. Gatineau, F., Larrue, J., Clair, D., Lorton, F., Richard-Molard, M., & Boudon-Padieu, E. (2001). A new natural planthopper vector of stolbur phytoplasma in the genus Pentastiridius (Hemiptera: Cixiidae). European Journal of Plant Pathology, 107, 263–271.CrossRefGoogle Scholar
  12. Gatineau, F., Jacob, N., Vautrin, S., Larrue, J., Lherminier, J., Richard-Molard, M., & Boudon-Padieu, E. (2002). Association with the syndrome “Basses Richesses” of sugar beet of a phytoplasma and a bacterium-like organism transmitted by a Pentastiridius sp. Phytopathology, 92, 384–392.PubMedCrossRefGoogle Scholar
  13. Holzinger, W. E., Kammerlander, I., & Nickel, H. (2003). The Auchenorrhyncha of Central Europe. Fulgoromorpha, Cicadomorpha Excl. Cicadellidae (p. 673). Leiden: Brill Academic Publishers.Google Scholar
  14. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  15. Johannesen, J., & Riedle‐Bauer, M. (2014). Origin of a sudden mass occurrence of the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae) in Austria. Annals of Applied Biology, 165, 488–495.CrossRefGoogle Scholar
  16. Johannesen, J., Foissac, X., Kehrli, P., & Maixner, M. (2012). Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen. PLoS ONE, 7, e51809.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jović, J., Cvrković, T., Mitrović, M., Krnjanjić, S., Petrović, A., Redinbaugh, M. G., Pratt, R. C., Hogenhout, S. A., & Toševski, I. (2009). Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia. Phytopathology, 99, 1053–1061.PubMedCrossRefGoogle Scholar
  18. Jović, J., Ember, I., Mitrović, M., Cvrković, T., Krstić, O., Krnjajić, S., Acs, Z., Kolber, M., & Toševski, I. (2011). Molecular detection of potato stolbur phytoplasma in Serbia. Bulletin of Insectology, 64, 83–84.Google Scholar
  19. Kostadinovska, E., Quaglino, F., Mitrev, S., Casati, P., Bulgari, D., & Bianco, P. A. (2014). Multiple gene analyses identify distinct “bois noir” phytoplasma genotypes in the Republic of Macedonia. Phytopathologia Mediterranea, 53, 300–310.Google Scholar
  20. Langer, M., & Maixner, M. (2004). Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43, 191–199.Google Scholar
  21. Lessio, F., Tedeschi, R., & Alma, A. (2007). Population dynamics, host plants and infection rate with Stolbur phytoplasma of Hyalesthes obsoletus Signoret in north-western Italy. Journal of Plant Pathology, 89, 97–102.Google Scholar
  22. Maixner, M. (1994). Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis, 33, 103–104.Google Scholar
  23. Murolo, S., Marcone, C., Prota, V., Garau, R., Foissac, X., & Romanazzi, G. (2010). Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. Journal of Applied Microbiology, 109, 2049–2059.PubMedCrossRefGoogle Scholar
  24. Murolo, S., Marcone, C., Prota, V., Garau, R., Foissac, X., & Romanazzi, G. (2013). Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. Corrigendum. Journal of Applied Microbiology, 115, 631–633.CrossRefGoogle Scholar
  25. Orenstein, S., Zahavi, T., Nestel, D., Sharon, R., Barkalifa, M., & Weintraub, P. (2003). Spatial dispersion patterns of potential leafhopper and planthopper (Homoptera) vectors of phytoplasma in wine vineyards. Annals of Applied Biology, 142, 341–348.CrossRefGoogle Scholar
  26. Pacifico, D., Alma, A., Bagnoli, B., Foissac, X., Pasquini, G., Tessitori, M., & Marzachi, C. (2009). Characterization of Bois noir Isolates by restriction fragment length polymorphism of a Stolbur-specific putative membrane protein gene. Phytopathology, 99, 711–715.PubMedCrossRefGoogle Scholar
  27. Pinzauti, F., Trivellone, V., & Bagnoli, B. (2008). Ability of Reptalus quinquecostatus (Hemiptera: Cixiidae) to inoculate stolbur phytoplasma to artificial feeding medium. Annals of Applied Biology, 153, 299–305.CrossRefGoogle Scholar
  28. Power, A. G. (1992). Host plant dispersion, leafhopper movement and disease transmission. Ecological Entomology, 17, 63–68.CrossRefGoogle Scholar
  29. Quaglino, F., Zhao, Y., Casati, P., Bulgari, D., Bianco, P. A., Wei, W., & Davis, R. E. (2013). ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63, 2879–2894.PubMedCrossRefGoogle Scholar
  30. Radonjić, S., Hrnčić, S., Jović, J., Cvrković, T., Krstić, O., Krnjajić, S., & Toševski, I. (2009). Occurrence and distribution of grapevine yellows caused by stolbur phytoplasma in Montenegro. Journal of Phytopathology, 157, 682–685.CrossRefGoogle Scholar
  31. Rambaut, A. (2012). FigTree. URL http://www.tree.bio.ed.ac.uk/software/figtree.
  32. Rambaut, A., & Drummond, A. J. (2009). Tracer v1.5, URL http://beast.bio.ed.ac.uk/Tracer.
  33. Riedle-Bauer, M., Sára, A., & Regner, F. (2008). Transmission of a stolbur phytoplasma by the agalliinae leafhopper Anaceratagallia ribauti (Hemiptera, Auchenorrhyncha, Cicadellidae). Journal of Phytopathology, 156, 687–690.CrossRefGoogle Scholar
  34. Šeruga, M., Škorić, D., Kozina, B., Mitrev, S., Krajačić, M., & Ćurković Perica, M. (2003). Molecular identification of a phytoplasma infecting grapevine in the Republic of Macedonia. Vitis, 42, 181–184.Google Scholar
  35. Swofford, D. L. (2002). Paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland: Sinauer Associates.Google Scholar
  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Trivellone, V., Pinzauti, F., & Bagnoli, B. (2005). Reptalus quinquecostatus (Dufour) (Auchenorrhyncha Cixiidae) as a possible vector of Stolbur-phytoplasma in a vineyard in Tuscany. Redia, 88, 103–108.Google Scholar
  38. Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Biljana Atanasova
    • 1
  • Miljana Jakovljević
    • 2
  • Dušan Spasov
    • 1
  • Jelena Jović
    • 2
  • Milana Mitrović
    • 2
  • Ivo Toševski
    • 2
    • 3
  • Tatjana Cvrković
    • 2
  1. 1.Štip, Faculty of AgricultureGoce Delčev UniversityStrumicaR. Macedonia
  2. 2.Department of Plant PestsInstitute for Plant Protection and EnvironmentZemunSerbia
  3. 3.CABIDelémontSwitzerland

Personalised recommendations