Advertisement

European Journal of Plant Pathology

, Volume 142, Issue 3, pp 645–652 | Cite as

First clues on a jasmonic acid role in grapevine resistance against the biotrophic fungus Plasmopara viticola

  • A. FigueiredoEmail author
  • F. Monteiro
  • M. Sebastiana
Article

Abstract

Plants are sessile organisms being constantly under a wide array of environmental pressures. Their resistance against biotic stress is regulated by phytohormones, of which jasmonic acid (JA) plays an important role against necrotrophic pathogens and herbivorous insects whereas salicylic acid (SA) plays a crucial role in plant defence against biotrophic and hemi-biotrophic pathogens, as well as in the establishment of systemic acquired resistance. Plasmopara viticola is a biotrophic oomycete responsible for one of the most important diseases in viticulture. Recent studies have shown that JA-signalling may be playing an important role on grapevine resistance against this biotrophic pathogen. Expression of enzymes associated to JA biosynthesis (LOX2, AOS, AOC, OPR3), activation (JAR1) and signalling (COI1) was analysed in two Vitis vinifera genotypes with different degrees of resistance towards P. viticola. Our results provide the first clues for a JA-signalling role in grapevine defence against this fungal biotroph.

Keywords

Jasmonic acid Biotrophic fungi Signalling pathways Resistance Plasmopara viticola 

Notes

Acknowledgments

This work was supported by the FCT PTDC/AGR-GPL/119753/2010 and research grant FCT SFRH / BPD / 63641 / 2009.

References

  1. Ali, K., Maltese, F., Figueiredo, A., Rex, M., Fortes, A. M., Zyprian, E., Pais, M. S., Verpoorte, R., & Choi, Y. H. (2012). Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. Plant Science, 191, 100–107.CrossRefPubMedGoogle Scholar
  2. Antico, C., Colon, C., Banks, T., & Ramonell, K. (2012). Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Frontiers in Biology, 7, 48–56.CrossRefGoogle Scholar
  3. Avanci, N., Luche, D., Goldman, G., & Goldman, M. (2010). Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research, 9, 484–505.CrossRefPubMedGoogle Scholar
  4. Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio-Costet, M., & Merillon, J. (2006). Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. Journal of Agricultural and Food Chemistry, 54, 9119–9125.CrossRefPubMedGoogle Scholar
  5. Belhadj, A., Telef, N., Saigne, C., Cluzet, S., Barrieu, F., Hamdi, S., & Merillon, J. (2008). Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiology and Biochemistry, 46, 493–499.CrossRefPubMedGoogle Scholar
  6. Bell, E., Creelman, R., & Mullet, J. (1995). A Chloroplast lipoxygenase is required for wound-induced Jasmonic acid accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 92, 8675–8679.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bottcher, C., & Pollmann, S. (2009). Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS Journal, 276, 4693–4704.CrossRefPubMedGoogle Scholar
  8. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F., Ponce, M., Micol, J., & Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448, 666–U664.CrossRefPubMedGoogle Scholar
  9. Chini, A., Fonseca, S., Chico, J., Fernandez-Calvo, P., & Solano, R. (2009). The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant Journal, 59, 77–87.CrossRefPubMedGoogle Scholar
  10. Dave, A., & Graham, I. (2012). Oxylipin signalling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA). Frontiers in Plant Science, 3, 42.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Demchenko, K., Zdyb, A., Feussner, I., & Pawlowski, K. (2012). Analysis of the subcellular localisation of lipoxygenase in legume and actinorhizal nodules. Plant Biology, 14, 56–63.PubMedGoogle Scholar
  12. Ellis, C., Karafyllidis, I., Wasternack, C., & Turner, J. (2002). The Arabidopsis mutant cev1 links cell wall signalling to jasmonate and ethylene responses. Plant Cell, 14, 1557–1566.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Feussner, I., & Wasternack, C. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53, 275–297.CrossRefPubMedGoogle Scholar
  14. Figueiredo, A., Fortes, A. M., Ferreira, S., Sebastiana, M., Choi, Y. H., Sousa, L., Acioli-Santos, B., Pessoa, F., Verpoorte, R., & Pais, M. S. (2008). Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Journal of Experimental Botany, 59, 3371–3381.CrossRefPubMedGoogle Scholar
  15. Figueiredo, A., Monteiro, F., Fortes, A. M., Bonow-Rex, M., Zyprian, E., Sousa, L., & Pais, M. S. (2012). Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Functional & Integrative Genomics, 12, 379–386.CrossRefGoogle Scholar
  16. Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., & Solano, R. (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology, 5, 344–350.CrossRefPubMedGoogle Scholar
  17. Gao, T., Yu, S., Zhang, F., Chen, X., Yu, Y., Zhang, D., Zhao, X., & Wang, W. (2014). Expression analysis of major genes involved in signalling pathways during infection of Chinese cabbage with Hyaloperonospora brassicae. Scientia Horticulturae, 167, 27–35.CrossRefGoogle Scholar
  18. Gessler, C., Pertot, I., & Perazzolli, M. (2011). Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea, 50, 3–44.Google Scholar
  19. Glauser, G., Dubugnon, L., Mousavi, S., Rudaz, S., Wolfender, J., & Farmer, E. (2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded arabidopsis. Journal of Biological Chemistry, 284, 34506–34513.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.CrossRefPubMedGoogle Scholar
  21. Hamiduzzaman, M., Jakab, G., Barnavon, L., Neuhaus, J., & Mauch-Mani, B. (2005). beta-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signalling. Molecular Plant-Microbe Interactions, 18, 819–829.CrossRefPubMedGoogle Scholar
  22. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8, R19.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Ismail, A., Riemann, M., & Nick, P. (2012). The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 63, 2127–2139.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Katsir, L., Schilmiller, A., Staswick, P., He, S., & Howe, G. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America, 105, 7100–7105.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kloek, A., Verbsky, M., Sharma, S., Schoelz, J., Vogel, J., Klessig, D., & Kunkel, B. (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant Journal, 26, 509–522.CrossRefPubMedGoogle Scholar
  26. Monteiro, F., Sebastiana, M., Pais, M. S., & Figueiredo, A. (2013). Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant vitis vinifera cultivars. PLoS ONE, 8, e72998.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Polesani, M., Bortesi, L., Ferrarini, A., Zamboni, A., Fasoli, M., Zadra, C., Lovato, A., Pezzotti, M., Delledonne, M., & Polverari, A. (2010). General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics, 11, 117.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Schommer, C., Palatnik, J., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E., Nath, U., & Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. Plos Biology, 6, 1991–2001.CrossRefGoogle Scholar
  29. Seltmann, M., Stingl, N., Lautenschlaeger, J., Krischke, M., Mueller, M., & Berger, S. (2010). Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiology, 152, 1940–1950.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Staswick, P., & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell, 16, 2117–2127.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Staswick, P., Tiryaki, I., & Rowe, M. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell, 14, 1405–1415.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., Takamiya, K., Shibata, D., Kobayashi, Y., & Ohta, H. (2005). 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology, 139, 1268–1283.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S., Howe, G., & Browse, J. (2007). JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature, 448, 661–U662.CrossRefPubMedGoogle Scholar
  34. Trouvelot, S., Varnier, A., Allegre, M., Mercier, L., Baillieul, F., Arnould, C., Gianinazzi-Pearson, V., Klarzynski, O., Joubert, J., Pugin, A., & Daire, X. (2008). A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Molecular Plant-Microbe Interactions, 21, 232–243.CrossRefPubMedGoogle Scholar
  35. Tytgat, T., Verhoeven, K., Jansen, J., Raaijmakers, C., Bakx-Schotman, T., Mcintyre, L., Van Der Putten, W., Biere, A., & Van Dam, N. (2013). Plants know where It hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica olracea. PLoS ONE, 8, e65502.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Vanholme, B., Grunewald, W., Bateman, A., Kohchi, T., & Gheysen, G. (2007). The tify family previously known as ZIM. Trends in Plant Science, 12, 239–244.CrossRefPubMedGoogle Scholar
  37. Walley, J., Kliebenstein, D., Bostock, R., & Dehesh, K. (2013). Fatty acids and early detection of pathogens. Current Opinion in Plant Biology, 16, 520–526.CrossRefPubMedGoogle Scholar
  38. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100, 681–697.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Wasternack, C., & Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Annals of Botany, 111, 1021–1058.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Biosystems & Integrative Sciences Institute (BioISI)Science Faculty of Lisbon UniversityLisboaPortugal

Personalised recommendations