European Journal of Plant Pathology

, Volume 142, Issue 3, pp 489–499 | Cite as

Fitness and cross-resistance of Alternaria alternata field isolates with specific or multiple resistance to single site inhibitors and mancozeb

  • Anastasios A. Malandrakis
  • Zoi A. Apostolidou
  • Anastasios Markoglou
  • Fotini Flouri
Article

Abstract

42 field isolates of Alternaria alternata collected from infected tomato fruit of processing plants located in the region of Pelloponisos, South Greece, were characterized in terms of sensitivity to mancozeb, tebuconazole, fludioxonil, iprodione and cyprodinil. Fungitoxicity tests in vitro revealed that 63 % of the isolates tested were sensitive to all the above fungicides whereas the remainder of the isolates exhibited reduced sensitivity to one or more of these fungicides. The observed resistance phenotypes were confirmed by in vivo experiments on artificially inoculated tomato fruit. EC50 in vitro values ranged from 2.34 to >100 μg/ml for mancozeb, 0.16 to >10 μg/ml for iprodione, 0.43 to 20 μg/ml for tebuconazole, 0.007 to >5 μg/ml for cyprodinil and from 0.002 to >10 μg/ml for fludioxonil. Sensitivity distributions of A. alternata isolates to mancozeb, iprodione, cyprodinil and fludioxonil was bimodal indicating a probable initiation of a discrete shift of the population towards reduced sensitivity to these fungicides. Correlation analysis of respective EC50 values showed positive cross-resistance relationships between fludioxonil and iprodione while positive correlation was observed between mancozeb and cyprodinil, mancozeb and tebuconazole, and cyprodinil and tebuconazole. Interestingly, a number of A. alternata isolates were specifically resistant to the multi-site inhibitor mancozeb, a fact reported for the first time. Isolates resistant to mancozeb were more aggressive while those with reduced sensitivity to both fludioxonil and iprodione produced significantly less conidia than sensitive ones. A considerable portion of the sample exhibited reduced sensitivity and no apparent fitness penalties, a fact that should be considered in future planning and implementation of anti-resistance strategies.

Keywords

Alternaria alternata Anilinopyrimidines dicarboximides Fungicide resistance Mancozeb Phenylpyrroles 

References

  1. Akhtar, K., Matin, M., Mirza, J., Shakir, A., & Rafique, M. (1994). Some studies on the post harvest diseases of tomato fruits and their chemical control. Pakistan Journal of Phytopathology, 6, 125–129.Google Scholar
  2. Akhtar, K., Saleem, M., Asghar, M., & Haq, M. (2004). New report of Alternaria alternata causing leaf blight of tomato in Pakistan. Plant Pathology, 53, 816.CrossRefGoogle Scholar
  3. Amrate, P. K., Sharma,J. R., Singh,  C. (2013). In vitro evaluation of fungicides, plant extracts and oils against Alternaria alternata (fr.) Keissler causing leaf spot of aloe barbadensis (miller). Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 15, 609–613.Google Scholar
  4. Avenot, H., & Michailides, T. (2007). Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant Disease, 91, 1345–1350.CrossRefGoogle Scholar
  5. Biggs, A. R. (1994). Mycelial growth, sporulation and virulence to apple fruit of Alternaria alternata isolates resistance to iprodione. Plant Disease, 78, 732–735.CrossRefGoogle Scholar
  6. Bochalyams, M., Shekhawat, K., Kumar, A., Singh, R., & Chohan, P. (2012). Management of Alternaria alternata causing alternaria fruit rot of brinjal (Solanum melongena) under in vitro conditions. Biopesticides International, 8, 131–137.Google Scholar
  7. Cabrito, T. R., Teixeira, M. C., Singh, A., Prasad, R., & Sa-Correia, I. (2011). The yeast ABC transporter Pdr18 (ORF YNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochemical Journal, 440, 195–202.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cui, W., Beever, R., Parkes, S., Weeds, P., & Templeton, M. (2002). An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea. Fungal Genetics and Biology, 36, 187–198.CrossRefPubMedGoogle Scholar
  9. Davis, R., Miyao, E., Mullen, R., Valencia, J., May, D., & Gwynne, B. (1997). Benefits of applications of chlorothalonil for the control of black mold of tomato. Plant Disease, 81, 601–603.CrossRefGoogle Scholar
  10. Dry, I., Yuan, K., & Hutton, D. (2004). Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genetics and Biology, 41, 102–108.CrossRefPubMedGoogle Scholar
  11. Fairchild, K., Miles, T., & Wharton, P. (2013). Assessing fungicide resistance in populations of Alternaria in Idaho potato fields. Crop Protection, 49, 31–39.CrossRefGoogle Scholar
  12. Fehr, M., Pahlke, G., Fritz, J. and Marko, D. (2007). Alternariol acts as a topoisomerase poison. In: Gesellschaft fur Mycotoxin Forschung (ed.) Proceedings of the 29th mycotoxin workshop, 14–16 May, 2007, Stuttgart-Fellbach, Germany, p. 123.Google Scholar
  13. FRAC (2010). FRAC Recommendations for Fungicide Mixtures. http://www.frac.info/publication/anhang/Resistance%20and%20Mixtures%20Jan2010_ff.pdf (last accessed May 2014).
  14. Griffin, G., & Chu, F. (1983). Toxicity of the Alternaria metabolites alternariol, alternariol monomethyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Applied and Environmental Microbiology, 46, 1420–1422.PubMedCentralPubMedGoogle Scholar
  15. Gutierrez Chapin, L., Wang, Y., Lutton, E., & McSpadden Gardener, B. (2006). Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions on tomatoes grown in Ohio. Plant Disease, 90, 397–403.CrossRefGoogle Scholar
  16. Hutton, D. G. (1988). The appearance of dicarboximide resistance in Alternaria alternata in passionfruit in south-east Queensland. Plant Pathology, 17, 34–38.Google Scholar
  17. Iacomi-Vasilescu, B., Avenot, H., Bataillé-Simoneau, N., Laurent, E., Guénard, M., & Simoneau, P. (2004). In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Protection, 23, 481–488.CrossRefGoogle Scholar
  18. Leiminger, J., & Hausladen, H. (2011). Effect of different fungicides on the control of Early Blight (Alternaria spp.) and potato yield. Gesunde Pflanzen, 63, 11–18.CrossRefGoogle Scholar
  19. Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M., & Chapeland, F. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58, 876–888.CrossRefPubMedGoogle Scholar
  20. Logrieco, A., Moretti, A., & Solfrizzo, M. (2009). Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin Journal, 2, 129–140.CrossRefGoogle Scholar
  21. Ma, Z., & Michailides, T. (2004a). An allele-specific PCR assay for detecting azoxystrobin-resistant Alternaria isolates from pistachio in California. Journal of Phytopathology, 152, 118–121.CrossRefGoogle Scholar
  22. Ma, Z., & Michailides, T. (2004b). Characterization of iprodione-resistant Alternaria isolates from pistachio in California. Pesticide Biochemistry and Physiology, 80, 75–84.CrossRefGoogle Scholar
  23. McPhee, W. J. (1980). Some characteristics of Alternaria alternata strains resistant to iprodione. Plant Disease, 64, 847–849.CrossRefGoogle Scholar
  24. Morris, P. F., Connolly, M. S., & St Clair, D. A. (2000). Genetic diversity of Alternaria alternata isolated from tomato in California assessed using RAPDs. Mycological Research, 104, 286–292.CrossRefGoogle Scholar
  25. Neeraj, & Verma, S. (2010). Alternaria diseases of vegetable crops and new approaches for its control. Asian Journal of Experimental Biological Sciences, 1, 681–692.Google Scholar
  26. Olaya, G., Bounds, R., & Tally, A. (2008). Sensitivity to azoxystrobin, difenoconazole and cyprodinil of Alternaria spp. isolates causing Alternaria leaf spot on almonds. Phytopathology, 98, S116.Google Scholar
  27. Ostry, V. (2008). Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin Journal, 1, 175–188.CrossRefGoogle Scholar
  28. Pearson, R. C., & Hall, D. H. (1975). Factors affecting the occurrence and severity of black mold on ripe tomato fruit caused by Alternaria alternata. Phytopathology, 65, 1352–1359.CrossRefGoogle Scholar
  29. Pollastro, S., Faretra, F., Di Canio, V., & De Guido, A. (1996). Characterization and genetic analysis of field isolates of Botryotinia fuckeliana (Botrytis cinerea) resistant to dichlofluanid. European Journal of Plant Pathology, 102, 607–613.CrossRefGoogle Scholar
  30. Rahimian, M. K. (1987). Resistance of Alternaria panax to iprodione under field conditions. Phytopathology, 77, 1747.Google Scholar
  31. Sitton, J. W., & Pierson, C. F. (1982). Interaction and control of Alternaria stem decay and blue mold in Anjou pears. Phytopathology, 72, 1008.Google Scholar
  32. Solel, Z., Timmer, L. W., & Kimchi, M. (1996). Iprodione resistance of Alternaria alternata pv. citri from Minneola Tangelo in Israel and Florida. Plant Disease, 80, 291–293.CrossRefGoogle Scholar
  33. Strandberg, J. O. (1992). Alternaria species that attack vegetable crops: Biology and options for disease management. In J. Chelkowski & A. Visconti (Eds.), Alternaria Biology, Plant Diseases, and Metabolites, Topics in Secondary Metabolism, 3 (pp. 175–208). Amsterdam: Elsevier Science Publishers B. V.Google Scholar
  34. Surviliene, E., & Dambrauskiene, E. (2006). Effect of different active ingredients of fungicides on Alternaria spp. growth in vitro. Agronomy Research, 4, 403–406.Google Scholar
  35. Sutar, A. N., Waghmare, M. B., & Kamble, S. S. (2013). Effect of passages on development of carbedazim resistance in of Alternaria alternata causing leaf spot of gerbera. Quaterly Journal of Life Sciences, 9, 744–745.Google Scholar
  36. Tuite, J. (1969). Plant pathological methods (p. 239). Minneapolis: Burgess Publishing Company.Google Scholar
  37. Zhang, C.-Q., Hu, J.-L., Wei, F.-L., & Zhu, G.-N. (2009). Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in eastern China. Phytoparasitica, 37, 351–359.CrossRefGoogle Scholar
  38. Ziyao, F., Runjie M., Xiuying, H., Zhiqiang, M., Wenqiao, W., Yingchao, L. (2012). Sensitivity baseline of Alternaria alternata, causal agent of potato early blight, to fludioxonil and cross-resistance to different fungicides. Acta Phytophylacica, 02.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Anastasios A. Malandrakis
    • 1
  • Zoi A. Apostolidou
    • 1
  • Anastasios Markoglou
    • 1
  • Fotini Flouri
    • 1
  1. 1.Pesticide Science LaboratoryAgricultural University of AthensAthensGreece

Personalised recommendations