European Journal of Plant Pathology

, Volume 141, Issue 1, pp 71–82 | Cite as

Barrage formation is independent from heterokaryon incompatibility in Verticillium dahliae

  • Ioannis A. Papaioannou
  • Milton A. Typas


Barrage formation has been traditionally used for the assessment of mycelial compatibility in many fungi and has often been assumed to represent a non-self recognition phenotype that is directly associated with vegetative incompatibility in these organisms. In this work, the optimal growth conditions for large-scale studies of barrage formation in the asexual fungus Verticillium dahliae were determined, and they were used for the analysis of a diverse collection comprising 69 isolates of V. dahliae and related species. Barrage formation was very frequent on a defined complete agar medium within V. dahliae and between species of the genus. However, it was not correlated with the classification of V. dahliae isolates into Vegetative Compatibility Groups (VCGs) (based on the standard method using complementary nit mutants), as it was recorded at high frequencies both within and between V. dahliae VCGs. The high overall frequency of barrage formation demonstrated the presence of a higher level of mycelial incompatibility in V. dahliae than heterokaryon incompatibility assessed by forcing complementary nit mutants to form heterokaryons under selective conditions. The possible association of barrage formation with morphological characteristics of the fungal colonies was investigated, and a negative correlation of frequency and intensity of barrages with the isolates’ capacity for pigment production was detected.


Barrage formation Heterokaryon incompatibility Mycelial compatibility groups Mycelial interactions Non-selective compatibility tests Vegetative compatibility 



The authors would like to thank all individuals listed in the footnote of Table 1 who provided fungal isolates that were used in this study. Furthermore, Prof. P. Apostolakos and Dr. P. Livanos (Faculty of Biology, National and Kapodistrian University of Athens) are gratefully acknowledged for their valuable help with live-cell imaging and fluorescent staining techniques. I. A. Papaioannou and this research have been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Supplementary material

10658_2014_525_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1,050 kb)
10658_2014_525_MOESM2_ESM.pdf (251 kb)
ESM 2 (PDF 251 kb)
10658_2014_525_MOESM3_ESM.pdf (611 kb)
ESM 3 (PDF 610 kb)
10658_2014_525_MOESM4_ESM.pdf (242 kb)
ESM 4 (PDF 242 kb)


  1. Akinsanmi, O. A., Backhouse, D., Simpfendorfer, S., & Chakraborty, S. (2008). Mycelial compatibility reactions of Australian Fusarium graminearum and F. pseudograminearum isolates compared with AFLP groupings. Plant Pathology, 57, 251–261.CrossRefGoogle Scholar
  2. Bhat, R. G., Smith, R. F., Koike, S. T., Wu, B. M., & Subbarao, K. V. (2003). Characterization of Verticillium dahliae isolates and wilt epidemics of pepper. Plant Diseases, 87, 789–797.CrossRefGoogle Scholar
  3. Burgess, T., Bihon, W., Wingfield, M. J., & Wingfield, B. D. (2009). A simple and rapid method to determine vegetative compatibility groups in fungi. Inoculum, 60, 1–2.Google Scholar
  4. Clarkson, J. M., & Heale, J. B. (1985). Heterokaryon compatibility and genetic recombination within a host plant between hop isolates of Verticillium albo-atrum. Plant Pathology, 34, 129–138.CrossRefGoogle Scholar
  5. Collado-Romero, M., Mercado-Blanco, J., Olivares-García, C., Valverde-Corredor, A., & Jiménez-Díaz, R. M. (2006). Molecular variability within and among Verticillium dahliae vegetative compatibility groups determined by fluorescent amplified fragment length polymorphism and polymerase chain reaction markers. Phytopathology, 96, 485–495.PubMedCrossRefGoogle Scholar
  6. Collado-Romero, M., Mercado-Blanco, J., Olivares-García, C., & Jiménez-Díaz, R. M. (2008). Phylogenetic analysis of Verticillium dahliae vegetative compatibility groups. Phytopathology, 98, 1019–1028.PubMedCrossRefGoogle Scholar
  7. Correll, J. C., Gordon, T. R., & McCain, A. H. (1988). Vegetative compatibility and pathogenicity of Verticillium albo-atrum. Phytopathology, 78, 1017–1021.CrossRefGoogle Scholar
  8. Correll, J. C., Klittich, C. J. R., & Leslie, J. F. (1989). Heterokaryon self-incompatibility in Gibberella fujikoroi (Fusarium moniliforme). Mycological Research, 93, 21–27.CrossRefGoogle Scholar
  9. Daayf, F., Nicole, M., & Geiger, J.-P. (1995). Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. European Journal of Plant Pathology, 101, 69–79.CrossRefGoogle Scholar
  10. Dervis, S., Kurt, S., Soylu, S., Erten, L., Soylu, E. M., Yıldız, M., & Tok, F. M. (2008). Vegetative compatibility groups of Verticillium dahliae from cotton in the southeastern Anatolia region of Turkey. Phytoparasitica, 36, 74–83.CrossRefGoogle Scholar
  11. Dervis, S., Yetisir, H., Yıldırım, H., Tok, F. M., Kurt, S., & Karaca, F. (2009). Genetic and pathogenic characterization of Verticillium dahliae isolates from eggplant in Turkey. Phytoparasitica, 37, 467–476.CrossRefGoogle Scholar
  12. Dobinson, K. F., Patterson, N. A., White, G. J., & Grant, S. (1998). DNA fingerprinting and vegetative compatibility analysis indicate multiple origins for Verticillium dahliae race 2 tomato isolates from Ontario, Canada. Mycological Research, 102, 1089–1095.CrossRefGoogle Scholar
  13. Dobinson, K. F., Harrington, M. A., Omer, M., & Rowe, R. C. (2000). Molecular characterization of vegetative compatibility group 4A and 4B isolates of Verticillium dahliae associated with potato early dying. Plant Diseases, 84, 1241–1245.CrossRefGoogle Scholar
  14. Elena, K., & Paplomatas, E. J. (1998). Vegetative compatibility groups within Verticillium dahliae isolates from different hosts in Greece. Plant Pathology, 47, 635–640.CrossRefGoogle Scholar
  15. Esser, K. (2006). Heterogenic incompatibility in fungi. In U. Kües & R. Fischer (Eds.), The Mycota I. Growth, differentiation and sexuality (2nd ed., pp. 141–165). Berlin: Springer.CrossRefGoogle Scholar
  16. Esser, K., & Meinhardt, F. (1984). Barrage formation in fungi. In H. F. Linskens & J. Heslop-Harrison (Eds.), Cellular interactions. Encyclopedia of plant physiology (pp. 350–361). Berlin: Springer.Google Scholar
  17. Ford, E. J., Miller, R. V., & Sherwood, J. E. (1995). Heterokaryon formation and vegetative compatibility in Sclerotinia sclerotiorum. Mycological Research, 99, 241–247.CrossRefGoogle Scholar
  18. Hastie, A. C. (1964). The parasexual cycle in Verticillium albo-atrum. Genetical Research, 5, 305–315.CrossRefGoogle Scholar
  19. Hastie, A. C., & Heale, J. B. (1984). Genetics of Verticillium. Phytopathologia Mediterranea, 23, 130–162.Google Scholar
  20. Hawthorne, B. T., & Rees-George, J. (1996). Use of nitrate non-utilizing mutants to study vegetative incompatibility in Fusarium solani (Nectria haematococca), especially members of mating populations I, V and VI. Mycological Research, 100, 1075–1081.CrossRefGoogle Scholar
  21. Heale, J. B. (1966). Heterokaryon synthesis and morphogenesis in Verticillium. Journal of General Microbiology, 45, 419–427.CrossRefGoogle Scholar
  22. Ikeda, K., Inoue, K., Nakamura, H., Hamanaka, T., Ohta, T., Kitazawa, H., Kida, C., Kanematsu, S., & Park, P. (2011). Genetic analysis of barrage line formation during mycelial incompatibility in Rosellinia necatrix. Fungal Biology, 115, 80–86.PubMedCrossRefGoogle Scholar
  23. Jiménez-Díaz, R. M., Mercado-Blanco, J., Olivares-García, C., Collado-Romero, M., Bejarano-Alcázar, J., Rodríguez-Jurado, D., et al. (2006). Genetic and virulence diversity in Verticillium dahliae populations infecting artichoke ineastern-central Spain. Phytopathology, 96, 288–298.PubMedCrossRefGoogle Scholar
  24. Jo, Y.-K., Chang, S. W., Rees, J., & Jung, G. (2008). Reassessment of vegetative compatibility of Sclerotinia homoeocarpa using nitrate-nonutilizing mutants. Phytopathology, 98, 108–114.PubMedCrossRefGoogle Scholar
  25. Joaquim, T. R., & Rowe, R. C. (1990). Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology, 80, 1160–1166.CrossRefGoogle Scholar
  26. Joaquim, T. R., & Rowe, R. C. (1991). Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology, 81, 552–558.CrossRefGoogle Scholar
  27. Katan, T. (2000). Vegetative compatibility in populations of Verticillium—an overview. In E. C. Tjamos, R. C. Rowe, J. B. Heale, & D. R. Fravel (Eds.), Advances in Verticillium: research and disease management (pp. 69–86). St. Paul: American Phytopathological Society Press.Google Scholar
  28. Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity and management of Verticillium species. Annual Review of Phytopathology, 47, 39–62.PubMedCrossRefGoogle Scholar
  29. Korolev, N., & Katan, T. (1999). Vegetative compatibility grouping in Verticillium nigrescens and V. tricorpus. Mycological Research, 103, 65–76.CrossRefGoogle Scholar
  30. Korolev, N., Katan, J., & Katan, T. (2000). Vegetative compatibility groups of Verticillium dahliae in Israel: their distribution and association with pathogenicity. Phytopathology, 90, 529–566.PubMedCrossRefGoogle Scholar
  31. Korolev, N., Pérez-Artés, E., Bejarano-Alcázar, J., Rodríguez-Jurado, D., Katan, J., Katan, T., & Jiménez-Díaz, R. M. (2001). Comparative study of genetic diversity and pathogenicity among populations of Verticillium dahliae from cotton in Spain and Israel. European Journal of Plant Pathology, 107, 443–456.CrossRefGoogle Scholar
  32. Korolev, N., Elad, Y., & Katan, T. (2008). Vegetative compatibility grouping in Botrytis cinerea using sulphate non-utilizing mutants. European Journal of Plant Pathology, 122, 369–383.CrossRefGoogle Scholar
  33. Leslie, J. F. (1993). Fungal vegetative compatibility. Annual Review of Phytopathology, 31, 127–150.PubMedCrossRefGoogle Scholar
  34. Livanos, P., Galatis, B., Quader, H., & Apostolakos, P. (2012). Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton, 69, 1–21.PubMedCrossRefGoogle Scholar
  35. Martin, F. N. (2010). Mitochondrial haplotype analysis as a tool for differentiating isolates of Verticillium dahliae. Phytopathology, 100, 1231–1239.PubMedCrossRefGoogle Scholar
  36. McCallum, B. D., Tekauz, A., & Gilbert, J. (2004). Barrage zone formation between vegetatively incompatible Fusarium graminearum (Gibberella zeae) isolates. Phytopathology, 94, 432–437.PubMedCrossRefGoogle Scholar
  37. Micali, C. O., & Smith, M. L. (2003). On the independence of barrage formation and heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and Biology, 38, 209–219.PubMedCrossRefGoogle Scholar
  38. Page, O. T. (1961). Variation in the banana-wilt pathogen, Fusarium oxysporum f. cubense. Canadian Journal of Botany, 39, 545–557.CrossRefGoogle Scholar
  39. Papaioannou, I. A., Dimopoulou, C. D., & Typas, M. A. (2013a). Structural and phylogenetic analysis of the rDNA intergenic spacer region of Verticillium dahliae. FEMS Microbiology Letters, 347, 23–32.PubMedCrossRefGoogle Scholar
  40. Papaioannou, I. A., Ligoxigakis, E. K., Vakalounakis, D. J., Markakis, E. A., & Typas, M. A. (2013b). Phytopathogenic, morphological, genetic and molecular characterization of a Verticillium dahliae population from Crete, Greece. European Journal of Plant Pathology, 136, 577–596.CrossRefGoogle Scholar
  41. Papaioannou, I. A., Dimopoulou, C. D., & Typas, M. A. (2014). “Cryptic” group-I introns in the nuclear SSU-rRNA gene of Verticillium dahliae. Current Genetics, 60, 135–148.PubMedCrossRefGoogle Scholar
  42. Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. New York: CABI Publishing.CrossRefGoogle Scholar
  43. Puhalla, J. E. (1979). Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopathology, 69, 1186–1189.CrossRefGoogle Scholar
  44. Puhalla, J. E., & Hummel, M. (1983). Vegetative compatibility groups within Verticillium dahliae. Phytopathology, 73, 1305–1308.CrossRefGoogle Scholar
  45. Puhalla, J. E., & Mayfield, J. E. (1974). The mechanisms of heterokaryotic growth in Verticillium dahliae. Genetics, 76, 411–422.PubMedCentralPubMedGoogle Scholar
  46. Rataj-Guranowska, M. (2006). Vegetative compatibility in Verticillium dahliae from several European countries. Phytopathologia Polonica, 42, 5–12.Google Scholar
  47. Remesal, E., & Navas-Cortés, J. A. (2012). An improved growth medium to assess mycelial compatibility groups in Sclerotium rolfsii. Journal of Phytopathology, 160, 237–242.CrossRefGoogle Scholar
  48. Rizet, G. (1952). Les phénomènes de barrage chez Podospora anserina. I. Analyse génétique des barrages entre les souches S et s. Review of Cytology Bioliology Végétale, 13, 51–92.Google Scholar
  49. Smith, M. L., Gibbs, C. C., & Milgroom, M. G. (2006). Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) in Cryphonectria parasitica. Mycologia, 98, 43–50.PubMedCrossRefGoogle Scholar
  50. Strausbaugh, C. A., Schroth, M. N., Weinhold, A. R., & Hancock, J. G. (1992). Assessment of vegetative compatibility of Verticillium dahliae tester strains and isolates from California potatoes. Phytopathology, 82, 61–68.CrossRefGoogle Scholar
  51. Tariq, V.-N., Gutteridge, C. S., & Jeffries, P. (1985). Comparative studies of cultural and biochemical characteristics used for distinguishing species within Sclerotinia. Transactions of the British Mycological Society, 84, 381–397.CrossRefGoogle Scholar
  52. Typas, M. A. (1983). Heterokaryon incompatibility and interspecific hybridization between Verticillium albo-atrum and Verticillium dahliae following protoplast fusion and microinjection. Journal of General Microbiology, 129, 3043–3056.Google Scholar
  53. Typas, M. A., & Heale, J. B. (1976). Heterokaryosis and the role of cytoplasmic inheritance in dark resting structure formation in Verticillium spp. Molecular General Genetics, 146, 17–26.CrossRefGoogle Scholar
  54. Typas, M. A., & Heale, J. B. (1978). Heterozygous diploid analyses via the parasexual cycle and a cytoplasmic pattern of inheritance in Verticillium species. Genetical Research, 31, 131–144.CrossRefGoogle Scholar
  55. Usami, T., Itoh, M., & Amemiya, Y. (2009). Asexual fungus Verticillium dahliae is potentially heterothallic. Journal of General Plant Pathology, 75, 422–427.CrossRefGoogle Scholar
  56. Worrall, J. J. (1997). Somatic incompatibility in basidiomycetes. Mycologia, 89, 24–36.CrossRefGoogle Scholar
  57. Zeise, K., & von Tiedemann, A. (2001). Morphological and physiological differentiation among vegetative compatibility groups of Verticillium dahliae in relation to V. longisporum. Journal of Phytopathology, 149, 469–475.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  1. 1.Department of Genetics and Biotechnology, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations