Advertisement

European Journal of Plant Pathology

, Volume 140, Issue 4, pp 677–688 | Cite as

Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia

  • Misrak Kebede
  • Sujan Timilsina
  • Amare Ayalew
  • Belayneh Admassu
  • Neha Potnis
  • Gerald V. Minsavage
  • Erica M. Goss
  • Jason C. Hong
  • Amanda Strayer
  • Mathews Paret
  • Jeffrey B. Jones
  • Gary E. ValladEmail author
Original Research

Abstract

Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis (MLSA), we identified a diverse group of Xanthomonas strains isolated from central Ethiopia. None of the strains were sensitive to copper or streptomycin. Multilocus sequence analysis was used to compare Ethiopian strains with representative Xanthomonas strains from a worldwide collection based on DNA sequences of six housekeeping genes (lacF, lepA, gyrB, fusA, gltA and gapA) and hrpB genes. Phylogenetic analysis of the concatenated sequences showed that X. gardneri, X. vesicatoria and X. perforans were associated with BST in Ethiopia, whereas Xanthomonas euvesicatoria was absent from the Ethiopian sample. There was no genetic diversity among the isolated strains belonging to X. gardneri and X. perforans. However, two X. vesicatoria haplotypes were identified indicating at least two different sources of introduction of X. vesicatoria to Ethiopia. All of the X. perforans strains were only pathogenic on tomato and were T3 strains with the exception of one identified as tomato race 4 (T4). The X. gardneri and X. vesicatoria strains were tomato race 2 (T2), but were variable in pepper race determinations indicating variation in effectors among strains.

Keywords

Bacterial characterization Multilocus sequence analysis 

Notes

Acknowledgments

Financial supports of Swedish International Development Cooperation Agency (SIDA) for research and Dr. J. B. Jones for identification of bacterial isolates were greatly acknowledged.

References

  1. Almeida, N. F., Shuangchun, Y., Magdalen, L., David, J. S., David, J. S., Bradford, C., Haijie, L., Carlos, J. V., Andrew, W., Clive, E., Eric, K., Dan, M., Aurelie, A., Gregory, B. M., Jonathan, D. J., Alan, C., Joao, C. S., & Boris, A. V. (2009). Draft Genome Sequence of Pseudomonas syringae pv. tomato, T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of Pseudomonas syringae pv. tomato DC3000. Molecular Plant Microbe Interactions, 22(1), 52–62.PubMedCrossRefGoogle Scholar
  2. Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., Schuenzel, E. L., Lacy, G. H., Sun, X., Jones, J. B., Castillo, J. A., Bull, C. T., Leman, S., Guttman, D. S., Setubal, J. C., & Vinatzer, B. A. (2010). PAMDB, A multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100(208), 215.Google Scholar
  3. Araújo, E. R., Pereira, R. C., Ferreira, M. A. S. V., Quezado-Duval, A. M., & Café-Filho, A. C. (2012). Sensitivity of xanthomonads causing tomato bacterial spot to copper and streptomycin and in vivo infra-specific competitive ability in Xanthomonas perforans resistant and sensitive to copper. Journal of Plant Pathology, 94, 79–87.Google Scholar
  4. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1994). Current protocols in molecular biology. New York: John Wiley and Sons.Google Scholar
  5. Behlau, F., Hong, J. C., Jones, J. B., & Graham, J. H. (2013). Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology, 103, 409–418.PubMedCrossRefGoogle Scholar
  6. Bouzar, H., Ahmed, N. E., Somodi, G. C., Jones, J. B., & Stall, R. E. (1994a). Characterization of Xanthomonas campestris pv.vesicatoria strains from tomato and pepper grown in Sudan. Plant Disease, 78, 12–19.CrossRefGoogle Scholar
  7. Bouzar, H., Jones, J. B., Stall, R. E., Hodge, N. C., & Minsavage, G. V. (1994b). Physiological, chemical, serological, and pathogenic analyses of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains. Phytopathology, 84, 663–671.CrossRefGoogle Scholar
  8. Bouzar, H., Jones, J. B., Somodi, G. C., Stall, R. E., Daouzli, N., Lambe, R. C., Felix, G. R., & Trinidad-Correa, R. (1996). Xanthomonas campestris pv. vesicatoria race variation in tomato and pepper fields of Mexico. Canadian Journal of Plant Pathology, 18, 75–77.CrossRefGoogle Scholar
  9. Bouzar, H., Jones, J. B., Stall, R. E., Louws, F. J., Schneider, M., Rademaker, J. L. W., de Bruijn, F. J., & Jackson, L. E. (1999). Multiphasic analysis of xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and Central America: evidence for common lineages within and between countries. Phytopathology, 89, 328–335.PubMedCrossRefGoogle Scholar
  10. Bradbury, J. F. (1970). Isolation and preliminary study of bacteria from plants. Review of Plant Pathology, 49(213), 218.Google Scholar
  11. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(1792), 1797.Google Scholar
  12. Hamza, A. A., Robène-Soustrade, I., Jouen, E., Gagnevin, L., Lefeuvre, P., Chiroleu, F., & Pruvost, O. (2010). Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian Ocean region. Plant Disease, 94(993), 999.Google Scholar
  13. Hert, A. P., Roberts, P. D., Momol, M. T., Minsavage, G. V., Tudor-Nelson, S. M., & Jones, J. B. (2005). Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains 259. Applied and Environmental Microbiology, 71, 3581–3588.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Horvath, D. M., Stall, R. E., Jones, J. B., Pauly, M. H., Vallad, G. E., Dahlbeck, D., Staskawicz, B. J., & Scott, J. W. (2012). Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PloS One, 7(8), e42036. doi: 10.1371/journal.pone.0042036.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Jones, J. B., Pohronezny, K. L., Stall, R. E., & Jones, J. P. (1986). Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residues, weeds, seeds and volunteer tomato plants. Phytopathology, 76, 430–434.CrossRefGoogle Scholar
  16. Jones, J. B., Stall, R. E., Scott, J. W., Somodi, G. C., Bouzar, H., & Hodge, N. C. (1995). A third tomato race of Xanthomonas campestris pv.vesicatoria. Plant Disease, 79, 395–398.CrossRefGoogle Scholar
  17. Jones, J. B., Bouzar, H., Somodi, G. C., Stall, R. E., Pernezny, K., El-Morsy, G., & Scott, J. W. (1998a). Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology, 88, 33–38.PubMedCrossRefGoogle Scholar
  18. Jones, J. B., Stall, R. E., & Bouzar, H. (1998b). Diversity among xanthomonads pathogenic on pepper and tomato. Annual Review of Phytopathology, 36(41), 58.Google Scholar
  19. Jones, J. B., Bouzar, H., Stall, R. E., Almiram, E. C., Roberts, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M., & Chun, J. (2000). Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systemic and Evolution Microbiology, 50, 1211–1219.CrossRefGoogle Scholar
  20. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27(755), 762.Google Scholar
  21. Jones, J. B., Zitter, T. A., Momol, T. M., & Miller, S. A. (2013). Compendium of tomato diseases and pests (2nd ed.). St. Paul: APS Press.Google Scholar
  22. Keen, N. T., Dahlbeck, D., Staskwicz, B., & Belser, W. (1984). Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. Journal of Bacteriology, 159, 825–831.PubMedPubMedCentralGoogle Scholar
  23. Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annual Review of Microbiology, 60(561), 588.Google Scholar
  24. Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M., & Spratt, B. G. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, 95, 3140–3145.CrossRefGoogle Scholar
  25. Mbega, E. R., Mabagala, R. B., Adriko, J., Lund, O. S., Wulff, E. G., & Mortensen, C. N. (2012). Five species of xanthomonads associated with bacterial leaf spot symptoms in tomato from Tanzania. Plant Disease, 96, 760.CrossRefGoogle Scholar
  26. Obradovic, A., Mavridis, A., Rudolph, K., Janse, J. D., Arsenijevic, M., Jones, J. B., Minsavage, G. V., & JawFen, W. (2004). Characterization and PCR-based typing of Xanthomonas campestris pv. vesicatoria from peppers and tomatoes in Serbia. European Journal of Plant Pathology, 110, 285–292.CrossRefGoogle Scholar
  27. OEPP/EPPO. (1988). Data sheets on quarantine organisms No. 157, Xanthomonas campestris pv. vesicatoria. OEPP/EPPO Bulletin, 18, 521–526.CrossRefGoogle Scholar
  28. Parkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J., & Stead, D. (2007). Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. International Journal of Systemic and Evolution Microbiology, 57(2881), 2887.Google Scholar
  29. Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systemic and Evolution Microbiology, 59(264), 274.Google Scholar
  30. Pohronezny, K., & Volin, R. B. (1983). The effect of bacterial spot on yield and quality of fresh market tomatoes. Horticultural Science, 18(69), 70.Google Scholar
  31. Posada, D. (2008). jModel Test: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.PubMedCrossRefGoogle Scholar
  32. Potnis, N., Krasileva, K., Chow, V., Almeida, N. F., Patil, P. B., Ryan, R. P., Sharlach, M., Behlau, F., Dow, J. M., Momol, M. T., White, F. F., Preston, J. F., Vinatzer, B. A., Koebnik, R., Setubal, J. C., Norman, D. J., Staskawicz, B. J., & Jones, J. B. (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics, 12, 146.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Quezado-Duval, A. M., & Camagro, L. E. A. (2004). Raças de Xanthomonas spp. associadas à mancha-bacteriana em tomate para processamento industrial no Brasil. Horticultura Brasileira, Brasília, 22, 80–86.CrossRefGoogle Scholar
  34. Quezado-Duval, A. M., Leite, R. P., Jr., Truffi, D., & Camargo, L. E. A. (2004). Outbreaks of bacterial spot caused by Xanthomonas gardneri on processing tomato in central-west Brazil. Plant Disease, 88(157), 161.Google Scholar
  35. Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 15721574.CrossRefGoogle Scholar
  36. Sahin, F., & Miller, S. A. (1996). Characterization of Ohio strains of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Disease, 80, 773–778.CrossRefGoogle Scholar
  37. Schornack, S., Minsavage, G. V., Stall, R. E., Jones, J. B., & Lahaye, T. (2008). Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytologist, 178, 546–556.CrossRefGoogle Scholar
  38. Sharlach, M., Dahlbeck, D., Liu, L., Chiu, J., Jiménez-Gómez, J. M., Kimura, S., Koenig, Maloof, J. N., Sinha, N., Minsavage, G. V., Jones, J. B., Stall, R. E., & Staskawicz, B. J. (2013). Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theoretical and Applied Genetics, 126, 601–609.PubMedCrossRefGoogle Scholar
  39. Shenge, K. C., Mabagala, R. B., & Mortensen, C. N. (2007). Identification and characterization of strains of Xanthomonas campestris pv. vesicatoria from Tanzania by biolog system and sensitivity to antibiotics. African Journal of Biotechnology, 6(1), 15–22.Google Scholar
  40. Stall, R. E., & Thayer, P. L. (1962). Streptomycin resistance of the bacterial spot pathogen and control with streptomycin. Plant Disease Report, 46, 389–392.Google Scholar
  41. Stall, R. E., Beaulieu, C., Egel, D., Hodge, N. C., & Leite, R. P. (1994). Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. International Journal of Systematic Bacteriology, 44, 47–53.CrossRefGoogle Scholar
  42. Stall, R. E., Jones, J. B., & Minsavage, G. V. (2009). Durability of resistance in tomato and pepper to Xanthomonads causing Bacterial Spot. Annual Review of Phytopathology, 47(265), 284.Google Scholar
  43. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.PubMedCrossRefGoogle Scholar
  44. Tamura, K., Daniel, P., Nicholas, P., Glen, S., Masatoshi, N., & Sudhir, K. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systemic Bacteriology, 45, 472–489.CrossRefGoogle Scholar
  46. Young, J. M., Park, D. C., Shearman, H. M., & Fargier, F. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31, 366–377.PubMedCrossRefGoogle Scholar
  47. Yu, Z. H., Wang, J. F., Stall, R. E., & Vallejos, C. C. (1995). Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) Dye. Genetics, 141, 675–682.PubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Misrak Kebede
    • 1
  • Sujan Timilsina
    • 2
  • Amare Ayalew
    • 1
  • Belayneh Admassu
    • 3
  • Neha Potnis
    • 2
  • Gerald V. Minsavage
    • 2
  • Erica M. Goss
    • 4
  • Jason C. Hong
    • 5
  • Amanda Strayer
    • 2
  • Mathews Paret
    • 6
  • Jeffrey B. Jones
    • 2
  • Gary E. Vallad
    • 7
    Email author
  1. 1.School of Plant ScienceHaramaya UniversityDire DawaEthiopia
  2. 2.Department of Plant PathologyUniversity of FloridaGainesvilleUSA
  3. 3.International Institute of Tropical AgricultureNairobiKenya
  4. 4.Department of Plant Pathology and Emerging Pathogens InstituteUniversity of FloridaGainesvilleUSA
  5. 5.United States Department of AgricultureFort PierceUSA
  6. 6.North Florida Research and Education CenterUniversity of FloridaQuincyUSA
  7. 7.Gulf Coast Research and Education CenterWimaumaUSA

Personalised recommendations