European Journal of Plant Pathology

, Volume 140, Issue 1, pp 19–37 | Cite as

The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages

  • P. Melloy
  • E. Aitken
  • J. Luck
  • S. Chakraborty
  • F. Obanor
Article

Abstract

Despite recent reports advancing our understanding of climate change on plant diseases, uncertainty remains concerning how host and pathogen interactions are changed by increases in atmospheric carbon-dioxide (CO2) and temperature. This study has observed crown rot inoculated and non-inoculated plants in three glasshouse environments comprising ambient CO2 with ambient temperature (E1), elevated CO2 with ambient temperature (E2) and elevated CO2 with warm temperatures (E3). The proportion of crown rot infected tillers (incidence), length of stem browning (severity) and biomass of Fusarium pseudograminearum in 16 wheat genotypes was destructively assessed at node development, anthesis, soft dough and crop maturity. Mean incidence, severity and Fusarium biomass was greater in E2, and all three measurements increased at a faster rate across plant development stages; E1 showed the lowest mean incidence and severity. Incidence and severity at each development stage was dependent on the environment each genotype was grown. The influence of genotype on Fusarium biomass at each development stage however was not seen to be dependent on environment. Irrespective of genotype plants with greater severity or relative Fusarium biomass showed lower plant dry weight at crop maturity in all environments with exception to E3, where CR severity did not exert a cost to plant dry weight. These results may allude to plant maturity and temperature-dependent resistance as effective mechanisms in building resistance to crown rot. Regardless of temperature, if crown rot symptoms and Fusarium biomass are to increase at elevated CO2 there is potential for a loss in crop production capability while boosting inoculum in crop stubble.

Keywords

Fusarium pseudograminearum Crown rot Carbon-dioxide Plant-pathogen interaction Temperature Fungal biomass 

Supplementary material

10658_2014_441_MOESM1_ESM.docx (23 kb)
ESM 1(DOCX 23 kb)
10658_2014_441_MOESM2_ESM.docx (23 kb)
ESM 2(DOCX 23 kb)
10658_2014_441_MOESM3_ESM.docx (23 kb)
ESM 3(DOCX 23 kb)
10658_2014_441_MOESM4_ESM.docx (24 kb)
ESM 4(DOCX 23 kb)
10658_2014_441_MOESM5_ESM.docx (22 kb)
ESM 5(DOCX 21 kb)
10658_2014_441_MOESM6_ESM.docx (22 kb)
ESM 6(DOCX 21 kb)
10658_2014_441_MOESM7_ESM.docx (48 kb)
ESM 7(DOCX 47 kb)
10658_2014_441_MOESM8_ESM.docx (28 kb)
ESM 8(DOCX 27 kb)

References

  1. Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012.CrossRefGoogle Scholar
  2. Baayen, R. H. (2011). languageR: Data sets and functions with “Analyzing Linguistic Data: A practical introduction to statistics”.Google Scholar
  3. Backhouse, D., & Burgess, L. W. (2002). Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Australasian Plant Pathology, 31, 321–327.CrossRefGoogle Scholar
  4. Bates, D., Maechler, M., & Bolker, B. (2011). lme4: Linear mixed-effects models using S4 classes. In D. Bates (Ed.), lme4 (0.999375–42 ed.): Comprehensive R Archive Network.Google Scholar
  5. Bender, J., Hertstein, U., & Black, C. R. (1999). Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis ‘ESPACE-wheat’ results. European Journal of Agronomy, 10, 185–195.CrossRefGoogle Scholar
  6. Burgess, L. W., Backhouse, D., Summerell, B. A., & Swan, L. J. (2001). Crown rot of wheat (Fusarium: Paul E. Nelson Memorial Symposium). St. Paul: American Phytopathological Society.Google Scholar
  7. Chakraborty, S. (2011). Climate change and plant diseases. Plant Pathology, 60, 1–1.CrossRefGoogle Scholar
  8. Chakraborty, S., Liu, C. J., Mitter, V., Scott, J. B., Akinsanmi, O. A., Ali, S., et al. (2006). Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australasian Plant Pathology, 35, 643–655.CrossRefGoogle Scholar
  9. Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change-opportunities and priorities in breeding. Crop & Pasture Science, 63, 251–268.CrossRefGoogle Scholar
  10. Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60, 2529–2539.PubMedCrossRefGoogle Scholar
  11. Dixon, G. R. (2012). Climate change impact on crop growth and food production, and plant pathogens. Canadian Journal of Plant Pathology, 34, 362–379.CrossRefGoogle Scholar
  12. Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., & McElrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330.CrossRefGoogle Scholar
  13. Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60, 54–69.CrossRefGoogle Scholar
  14. Ewert, F., & Pleijel, H. (1999). Phenological development, leaf emergence, tillering and leaf area index, and duration of spring wheat across Europe in response to CO2 and ozone. European Journal of Agronomy, 10, 171–184.CrossRefGoogle Scholar
  15. FAO (2011). Climate change and food security in the context of the Cancun agreements. http://www.fao.org/climatechange/en/: Food and Agriculture Organisation of the United Nations.
  16. FAO (2013). FAO Cereal supply and demand brief. http://www.fao.org/worldfoodsituation/wfs-home/csdb/en/. Accessed 12 March 2013.
  17. Fischer, R. A. (2011). Wheat physiology: a review of recent developments. Crop & Pasture Science, 62, 95–114.CrossRefGoogle Scholar
  18. GRDC (2011). Time of Sowing. In Grains Research and Development Corporation (Ed.), (March 2011 ed.): GRDC.Google Scholar
  19. Hatfield, J. L., & Prueger, J. H. (2011). Agroecology: Implications for plant response to climate change. In Crop adaptation to climate change (pp. 27–43): Wiley-Blackwell.Google Scholar
  20. Hibberd, J. M., Whitbread, R., & Farrar, J. F. (1996). Effect of elevated concentrations of CO2 on infection of barley by erysiphe graminis. Physiological and Molecular Plant Pathology, 48, 37–53.CrossRefGoogle Scholar
  21. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363.PubMedCrossRefGoogle Scholar
  22. IPCC (2007). Climate change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Geneva Switzerland: Intergovernmental Panel on Climate Change (IPCC).Google Scholar
  23. Juroszek, P., & von Tiedemann, A. (2013). Climate change and potential future risks through wheat diseases: a review. European Journal of Plant Pathology, 136, 21–33.CrossRefGoogle Scholar
  24. Kazan, K., Gardiner, D. M., & Manners, J. M. (2012). On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology, 13, 399–413.PubMedCrossRefGoogle Scholar
  25. Ko, J., Ahuja, L., Kimball, B., Anapalli, S., Ma, L. W., Green, T. R., et al. (2010). Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agricultural and Forest Meteorology, 150, 1331–1346.CrossRefGoogle Scholar
  26. Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H. Y., Okada, M., & Kobayashi, K. (2006). Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology, 96, 425–431.PubMedCrossRefGoogle Scholar
  27. Lake, J. A., & Wade, R. N. (2009). Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. Journal of Experimental Botany, 60, 3123–3131.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lamari, L., & Bernier, C. C. (1994). Temperature induced resistance to Tan Spot Pyrenophora tritici repentis of wheat. Canadian Journal of Plant Pathology, 16, 279–286.CrossRefGoogle Scholar
  29. Lamprecht, S. C., Marasas, W. F. O., Hardy, M. B., & Calitz, F. J. (2006). Effect of crop rotation on crown rot and the incidence of Fusarium pseudograminearum in wheat in the Western Cape, South Africa. Australasian Plant Pathology, 35, 419–426.CrossRefGoogle Scholar
  30. Li, A. G., Hou, Y. S., Wall, G. W., Trent, A., Kimball, B. A., & Pinter, P. J. (2000). Free-air CO2 enrichment and drought stress effects on grain filling rate and duration in spring wheat. Crop Science, 40, 1263–1270.CrossRefGoogle Scholar
  31. Li, B., Peng, X., Wang, F., & Peng, R. (2001). High temperature induced resistance to Cladosporium cucumerinum in cucumbers. Acta Horticulturae Sinica, 28, 177–179.Google Scholar
  32. Li, X., Liu, C., Sukumar, C., Manners, J. M., & Kazan, K. (2008). A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum. Journal of Phytopathology, 156, 751–754.CrossRefGoogle Scholar
  33. Li, H. B., Xie, G. Q., Ma, J., Liu, G. R., Wen, S. M., Ban, T., et al. (2010). Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 121, 941–950.PubMedCrossRefGoogle Scholar
  34. Liu, S., Griffey, C. A., & Maroof, M. A. S. (2001). Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Science, 41, 1268–1275.CrossRefGoogle Scholar
  35. Long, S. P. (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant, Cell and Environment, 14, 729–739.CrossRefGoogle Scholar
  36. Manderscheid, R., Burkart, S., Bramm, A., & Weigel, H. J. (2003). Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. European Journal of Agronomy, 19, 411–425.CrossRefGoogle Scholar
  37. Manes, Y., Gomez, H. F., Puhl, L., Reynolds, M., Braun, H. J., & Trethowan, R. (2012). Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Science, 52, 1543–1552.CrossRefGoogle Scholar
  38. Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G. H., Sonnewald, U., & Mock, H. P. (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell and Environment, 29, 126–137.PubMedCrossRefGoogle Scholar
  39. Melloy, P., Hollaway, G., Luck, J. O., Norton, R. O. B., Aitken, E., & Chakraborty, S. (2010). Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology, 16, 3363–3373.CrossRefGoogle Scholar
  40. Mendiburu, F. d. (2012). agricolae: statistical procedures for agricultural research. (Vol. R package version 1.1–3). http://CRAN.R-project.org/package=agricolae.
  41. Miller, J. D., & Ewen, M. A. (1997). Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars frontana and casavant. Natural Toxins, 5, 234–237.PubMedCrossRefGoogle Scholar
  42. Murray, G. M., & Brennan, J. P. (2009). Estimating disease losses to the Australian wheat industry. Australasian Plant Pathology, 38, 558–570.CrossRefGoogle Scholar
  43. Nan, R., Carman, J. G., & Salisbury, F. B. (2002). Water stress, CO2 and photoperiod influence hormone levels in wheat. Journal of Plant Physiology, 159, 307–312.PubMedCrossRefGoogle Scholar
  44. N.V. Trials (2013). http://www.nvtonline.com.au/. Accessed April, 2013.
  45. Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., et al. (2008). Climate change: can wheat beat the heat? Agriculture, Ecosystems & Environment, 126, 46–58.CrossRefGoogle Scholar
  46. Parry, D. W., Pettitt, T. R., Jenkinson, P., & Lees, A. K. (1994). The Cereal Fusarium Complex (Ecology of Plant Pathogens). Wallingford: CAB International.Google Scholar
  47. Pettitt, T. R., & Parry, D. W. (1996). Effects of climate change on Fusarium foot rot of winter wheat in the United Kingdom. In N. Magan & G. M. Gadd (Eds.), Fungi and Environmental Change (pp. 20–31). London: Cambridge University Press.CrossRefGoogle Scholar
  48. Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.Google Scholar
  49. Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., et al. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37, e45.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G., et al. (2011). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95, 1204–1216.CrossRefGoogle Scholar
  51. Smiley, R. W. (2009). Water and temperature parameters associated with winter wheat diseases caused by soilborne pathogens. Plant Disease, 93, 73–80.CrossRefGoogle Scholar
  52. Smiley, R. W., & Yan, H. (2009). Variability of Fusarium crown rot tolerances among cultivars of spring and winter wheat. Plant Disease, 93, 954–961.CrossRefGoogle Scholar
  53. Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L., & Manners, J. M. (2008). Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Molecular Plant-Microbe Interactions, 21, 1571–1581.PubMedCrossRefGoogle Scholar
  54. Tans, P., & Keeling, R. (2013). Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 4 July 2013.
  55. The Royal Society, (2010). Climate change: Summary of Science. The Royal Society.Google Scholar
  56. Tunali, B., Obanor, F., Erginbas, G., Westecott, R. A., Nicol, J., & Chakraborty, S. (2012). Fitness of three Fusarium pathogens of wheat. FEMS Microbiology Ecology, 81, 596–609.PubMedCrossRefGoogle Scholar
  57. Uauy, C., Brevis, J. C., Chen, X. M., Khan, I., Jackson, L., Chicaiza, O., et al. (2005). High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics, 112, 97–105.PubMedCrossRefGoogle Scholar
  58. Webb, K. M., Ona, I., Bai, J., Garrett, K. A., Mew, T., Cruz, C. M. V., et al. (2010). A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytologist, 185, 568–576.PubMedCrossRefGoogle Scholar
  59. Wheeler, T. R., Batts, G. R., Ellis, R. H., Hadley, P., & Morison, J. I. L. (1996). Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. Journal of Agricultural Science, 127, 37–48.CrossRefGoogle Scholar
  60. Wildermuth, G. B., & McNamara, R. B. (1994). Testing wheat seedlings for resistance to crown rot caused be Fusarium graminearum group 1. Plant Disease, 78, 949–953.CrossRefGoogle Scholar
  61. Yang, X. M., Ma, J., Li, H. B., Ma, H. X., Yao, J. B., & Liu, C. J. (2010). Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. European Journal of Plant Pathology, 128, 495–502.CrossRefGoogle Scholar
  62. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). Decimal code for growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar
  63. Zheng, B. Y., Chenu, K., Dreccer, M. F., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 18, 2899–2914.PubMedCrossRefGoogle Scholar
  64. Ziska, L. H., Morris, C. F., & Goins, E. W. (2004). Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon dioxide be a factor in wheat performance? Global Change Biology, 10, 1810–1819.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • P. Melloy
    • 1
    • 2
  • E. Aitken
    • 3
  • J. Luck
    • 4
  • S. Chakraborty
    • 1
  • F. Obanor
    • 1
  1. 1.CSIRO Plant IndustrySt LuciaAustralia
  2. 2.School of Agriculture and Food SciencesThe University of QueenslandSt LuciaAustralia
  3. 3.School of Agriculture and Food SciencesThe University of QueenslandSt LuciaAustralia
  4. 4.CRC Plant Biosecurity, 11 The University of MelbourneBurnley CampusRichmondAustralia

Personalised recommendations