European Journal of Plant Pathology

, Volume 139, Issue 3, pp 641–653 | Cite as

Characterization of Pseudoperonospora cubensis isolates from Europe and Asia using ISSR and SRAP molecular markers

  • İlknur Polat
  • Ömür Baysal
  • Francesco Mercati
  • Miloslav Kitner
  • Yigal Cohen
  • Ales Lebeda
  • Francesco Carimi
Original Research

Abstract

Downy mildew caused by Pseudoperonospora cubensis is a major disease of cucurbits worldwide. New genotypes of the pathogen have recently appeared in the USA, EU and Israel causing breakdown of genetic resistance, expansion of host range, and the appearance of a new A2 mating type. Seventy-eight P. cubensis isolates were collected during 1996–2011 from cucurbits fields in different regions of Turkey, Israel and the Czech Republic and genetic diversity was analysed using highly polymorphic ISSR and SRAP molecular markers. The data acquired showed remarkable genetic diversity within and among the isolates. While isolates from Turkey and Czech Republic exhibited uniform genetic background, the isolates from Israel were clearly distinguished from the others. The results may indicate on migration and/or frequent sexual reproduction of the pathogen in Israel. Moreover the selected markers can be suggested for monitoring genetic diversity within P. cubensis isolates in further studies.

Keywords

Cucumis sativus Cucurbits Cucurbit downy mildew Genetic diversity Pathotypes Population structure Mating type 

References

  1. Adhikari, B. N., Savory, E. A., Vaillancourt, B., Childs, K. L., Hamilton, J. P., Day, B., & Buell, C. R. (2012). Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS ONE, 7, e34954.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baysal, Ö., Siragusa, M., Ikten, H., Polat, I., Gumrukcu, E., Yigit, F., Carimi, F., & Texeira da Silva, J. A. (2009). Fusarium oxysporum f. sp lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology, 74, 68–75.CrossRefGoogle Scholar
  3. Beroiz, B., Ortego, F., Callejas, C., Hernandez-Crespo, P., Castañera, P., & Ochando, M. D. (2012). Genetic structure of Spanish populations of Ceratitis capitata revealed by RAPD and ISSR markers: implications for resistance management. Spanish Journal of Agricultural Research, 10, 815–825.CrossRefGoogle Scholar
  4. Cappelli, C., Buonaurio, R., & Stravato, V. M. (2003). Occurrence of Pseudoperonospora cubensis pathotype 5 on squash in Italy. Plant Disease, 87, 449.CrossRefGoogle Scholar
  5. Cohen, Y., & Rubin, A. E. (2012). Mating type and sexual reproduction of Pseudoperonospora cubensis, the downy mildew agent of cucurbits. European Journal of Plant Pathology, 132, 577–592.CrossRefGoogle Scholar
  6. Cohen, Y., Meron, I., Mor, N., & Zuriel, S. (2003). A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica, 31, 458–466.CrossRefGoogle Scholar
  7. Cohen, Y., Rubin, A. E., & Galperin, M. (2013a). Host preference of mating type in Pseudoperonospora cubensis, the downy mildew causal agent of cucurbits. Plant Disease, 97, 292–292.CrossRefGoogle Scholar
  8. Cohen, Y., Rubin, A. E., & Galperin, M. (2013b). Seed transmission of Pseudoperonospora cubensis in dalorit (Cucurbita moschata). Abstracts of Presentations at the 34th Congress of the Israeli Phytopathological Society February 19–20, 2013 [ARO] The Volcani Center, Bet Dagan 50250, Israel 5–6. Phytoparasitica. doi:10.1007/s12600-013-0310-4.Google Scholar
  9. Cohen, Y., Rubin, A. E., Liu, X. L., Wang, W. Q., Zhang, Y. J., & Hermann, D. (2013c). First report on the occurrence of A2 mating type of the cucurbit downy mildew agent Pseudoperonospora cubensis in China. Plant Disease, 97, 559–559.CrossRefGoogle Scholar
  10. Cooke, D. E. L., & Lees, A. K. (2004). Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathology, 53, 692–704.CrossRefGoogle Scholar
  11. Devran, Z., & Baysal, Ö. (2012). Genetic characterization of Meloidogyne incognita isolates from Turkey using sequence-related amplified polymorphism (SRAP). Biologia, 67, 535–539.CrossRefGoogle Scholar
  12. Dubey, S. C., & Singh, S. R. (2008). Virulence analysis and oligonucleotide fingerprinting to detect diversity among indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Mycopathologia, 165, 389–406.PubMedCrossRefGoogle Scholar
  13. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology Research, 14, 2611–2620.CrossRefGoogle Scholar
  14. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.Google Scholar
  15. Fernando, W. G. D., Zhang, J. X., Dusabenyagasani, M., Guo, X. W., Ahmed, H., & McCallum, B. (2006). Genetic diversity of Gibberella zeae isolates from Manitoba. Plant Disease, 90, 1337–1342.CrossRefGoogle Scholar
  16. Ferriol, M., Pico, M. B., & Nuez, F. (2003). Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 50, 227–238.CrossRefGoogle Scholar
  17. Holmes, G. J., Main, C. E., & Keever, Z. T. (2004). Cucurbit downy mildew: a unique pathosystem for disease forecasting. In P. T. N. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research (Vol. 2, pp. 69–80). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  18. Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806.PubMedCrossRefGoogle Scholar
  19. Lamour, K. H., Mudge, J., Gobena, D., Hurtado-Gonzales, O. P., Schmutz, J., Kuo, A., et al. (2012). Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Molecular Plant-Microbe Interactions, 25, 1350–1360.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lebeda, A. (1999). Pseudoperonospora cubensis on Cucumis spp. and Cucurbita spp.—resistance breeding aspects. Acta Horticulturae, 492, 363–370.Google Scholar
  21. Lebeda, A., & Cohen, Y. (2011). Cucurbit downy mildew (Pseudoperonospora cubensis)- biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology, 129, 157–192.CrossRefGoogle Scholar
  22. Lebeda, A., & Gadasova, V. (2002). Pathogenic variation of Pseudoperonospora cubensis in the Czech Republic and some other European countries. Acta Horticulture, 588, 137–141.Google Scholar
  23. Lebeda, A., & Widrlechner, M. P. (2003). A set of Cucurbitaceae taxa for differentiation of Pseudoperonospora cubensis pathotypes. Journal of Plant Disease and Protection, 110, 337–349.Google Scholar
  24. Lebeda, A., Widrlechner, M. P., & Urban, J. (2006). Individual and population aspects of interactions between cucurbits and Pseudoperonospora cubensis: pathotypes and races. In G. J. Holmes (Ed.), Proceedings of Cucurbitaceae 2006 (pp. 453–467). North Carolina: Universal Press.Google Scholar
  25. Lebeda, A., Hübschová, J., & Urban, J. (2010). Temporal population dynamics of Pseudoperonospora cubensis. In J. A. Thies, S. Kousik, & A. Levi (Eds.), Cucurbitaceae 2010 Proceedings (pp. 240–243). Alexandria: American Society for Horticultural Science.Google Scholar
  26. Lebeda, A., Pavelkova, J., Urban, J., & Sedlakova, B. (2011). Distribution, host range and disease severity of Pseudoperonospora cubensis on Cucurbits in the Czech Republic. Journal of Phytopathology, 159, 589–596.CrossRefGoogle Scholar
  27. Lebeda, A., Sedláková, B., & Pavelková, J. (2012). New hosts of Pseudoperonospora cubensis in the Czech Republic and pathogen virulence variation. In N. Sari, I. Solmaz, & V. Aras (Eds.), Cucurbitaceae 2012 Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. October 15-18th, 2012, Antalya, Turkey (pp. 768–776). Adana: Cukurova University.Google Scholar
  28. Lebeda, A., Pavelkova, J., Sedlakova, B., & Urban, J. (2013). Structure and temporal shifts in virulence of Pseudoperonospora cubensis populations in the Czech Republic. Plant Pathology, 62, 336–345.CrossRefGoogle Scholar
  29. Levi, A., Thomas, C. E., Simmons, A. M., & Thies, J. A. (2005). Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo. Genetic Resources and Crop Evolution, 52, 465–472.CrossRefGoogle Scholar
  30. Lewontin, R. C. (1972). The apportonment of human diversity. Evolutionary Biology, 6, 381–398.CrossRefGoogle Scholar
  31. Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103, 455–461.CrossRefGoogle Scholar
  32. Lin, Z. X., Zhang, X. L., & Nie, Y. C. (2004). Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Acta Biochimica et Biophysica Sinica, 31, 622–626.Google Scholar
  33. Lin, Z., He, D., Zhang, X., Nie, Y., Guo, X., Feng, C., & Stewart, J. M. D. (2005). Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding, 124, 180–187.CrossRefGoogle Scholar
  34. Liu, K. J., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21, 2128–2129.PubMedCrossRefGoogle Scholar
  35. Martins-Lopes, P., Lima-Brito, J., Gomes, S., Meirinhos, J., Santos, L., & Guedes-Pinto, H. (2007). RAPD and ISSR molecular markers in Olea europaea L.: variability and molecular cultivar identification. Genetic Resource Crop Evolution, 54, 117–128.CrossRefGoogle Scholar
  36. Mitchell, M. N., Ocamb, C. M., Grunwald, N. J., Mancino, L. E., & Gent, D. H. (2011). Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology, 101, 805–818.PubMedCrossRefGoogle Scholar
  37. Nei, M. (1973). The theory and estimation of genetic distance. In N. E. Morton (Ed.), Genetic structure of populations (pp. 45–54). Honolulu: University Press of Hawaii.Google Scholar
  38. Page, R. D. M. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Application in Bioscience, 12, 357–358.Google Scholar
  39. Palti, J., & Cohen, Y. (1980). Downy mildew of cucurbits (Pseudoperonospora cubensis)—the fungus and its hosts, distribution, epidemiology and control. Phytoparasitica, 8, 109–147.CrossRefGoogle Scholar
  40. Pavelkova, J., Lebeda, A., & Sedlakova, B. (2011). First report of Pseudoperonospora cubensis on Cucurbita moschata in the Czech Republic. Plant Disease, 95, 878–879.CrossRefGoogle Scholar
  41. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537–2539.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pritchard, J. K., & Wen, W. (2003). Documentation for STRUCTURE Software (eds).Google Scholar
  43. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.PubMedCentralPubMedGoogle Scholar
  44. Quesada-Ocampo, L. M., Granke, L. L., Olsen, J., Gutting, H. C., Runge, F., Thines, M., Lebeda, A., & Hausbeck, M. K. (2012). The genetic structure of Pseudoperonospora cubensis populations. Plant Disease, 96, 1459–1470.CrossRefGoogle Scholar
  45. Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.CrossRefGoogle Scholar
  46. Runge, F., Choi, Y. J., & Thines, M. (2011). Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. European Journal of Plant Pathology, 129, 135–146.CrossRefGoogle Scholar
  47. Sarris, P., Abdelhalim, M., Kitner, M., Skandalis, N., Panopoulos, N., Doulis, A., & Lebeda, A. (2009). Molecular polymorphisms between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and the phytopathological and phylogenetic implications. Plant Pathology, 58, 933–943.CrossRefGoogle Scholar
  48. Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K., & Day, B. (2011). The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology, 12, 217–226.PubMedCrossRefGoogle Scholar
  49. Savory, E. A., Adhikari, B. N., Hamilton, J. P., Vaillancourt, B., Buell, C. R., & Day, B. (2012a). mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS ONE, 7, e35796.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Savory, E. A., Zou, C., Adhikari, B. N., Hamilton, J. P., Buell, C. R., Shiu, S. H., & Day, B. (2012b). Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLoS ONE, 7, e34701.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Soliani, C., Rondan-Dueñas, J., Chiappero, M. B., Martínez, M., García, E., & Garcenal, C. N. (2010). Genetic relationships among populations of Aedes aegypti from Uruguay and northeastern Argentina inferred from ISSR-PCR. Medical and Veterinary Entomology, 24, 316–323.PubMedGoogle Scholar
  52. Thomas, C. E., Inaba, T., & Cohen, Y. (1987). Physiological specialization in Pseudoperonospora cubensis. Phytopathology, 77, 1621–1624.CrossRefGoogle Scholar
  53. Thomas, A., Carbone, I., & Ojiambo, P. (2013). Occurrence of the A2 mating type of Pseudoperonospora cubensis in the United States. Phytopathology, 103, 145–145.CrossRefGoogle Scholar
  54. Urban, J., & Lebeda, A. (2007). Variation of fungicide resistance in Czech populations of Pseudoperonospora cubensis. Journal of Phytopathology, 155, 143–151.CrossRefGoogle Scholar
  55. Voglmayr, H. (2008). Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. European Journal of Plant Pathology, 122, 3–18.CrossRefGoogle Scholar
  56. Yeboah, M. A., Chen, X. H., Feng, C. R., Liang, G. H., & Gu, M. H. (2007). A genetic linkage map of cucumber (Cucumis sativus L) combining SRAP and ISSR markers. African Journal of Biotechology, 6, 2784–2791.Google Scholar
  57. Yeh, F. C., Yang, R. C., & Boyle, T. (1999). Popgene, version 1.31. (eds). Edmonton: Centre for International Forestry Research and University of Alberta.Google Scholar
  58. Zhang, Y. J., Pu, Z. J., Qin, Z. W., Zhou, X. Y., Liu, D., Dai, L. T., & Wang, W. B. (2012). A study on the overwintering of cucumber downy mildew oospores in China. Journal of Phytopathology, 160, 469–474.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • İlknur Polat
    • 2
  • Ömür Baysal
    • 1
  • Francesco Mercati
    • 3
  • Miloslav Kitner
    • 5
  • Yigal Cohen
    • 4
  • Ales Lebeda
    • 5
  • Francesco Carimi
    • 3
  1. 1.Department of Molecular Biology and Genetic, Faculty of Life SciencesMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Batı Akdeniz Agricultural Research InstituteAntalyaTurkey
  3. 3.Research Division PalermoInstitute of Biosciences and Bioresources (IBBR) – CNRPalermoItaly
  4. 4.The Mina and Everard Goodman Faculty of Life SciencesBar Ilan UniversityRamat-GanIsrael
  5. 5.Department of Botany, Faculty of SciencePalacky University in OlomoucOlomoucCzech Republic

Personalised recommendations