European Journal of Plant Pathology

, Volume 139, Issue 3, pp 557–566 | Cite as

Characterization of Pectobacterium carotovorum subsp. carotovorum and brasiliense from diseased potatoes in Kenya

  • Edward M. Onkendi
  • Lucy N. Moleleki


Using a DNA-based typing method, 48 bacterial strains isolated from infected potato (Solanum tuberosum) tubers originating from Kenya were characterized. The pel gene specific primers showed that all the 48 bacterial strains were pectolytic. Subspecies-specific primers EXPCCF/EXPCCR and Br1f/L1r identified 66 % of the strains as Pectobacterium carotovorum subsp. carotovorum while 34 % were identified as Pectobacterium carotovorum subsp. brasiliense based on their characteristic band sizes of 550 and 322 bp, respectively. Amplification of the 16S-23S rDNA (ITS) region did not yield observable differences in banding patterns between the Kenyan strains. However, PCR-RFLP analysis together with partial nucleotide sequences of the housekeeping mdh and gapA genes confirmed the results obtained by the specific primers. Phylogenetic analysis of the concatenated partial gene sequences grouped Pectobacterium carotovorum subsp. carotovorum and Pectobacterium carotovorum subsp. brasiliense Kenyan strains together with those identified in other parts of the world with 90 % and 99 % bootstrap support values, respectively. Pathogenicity assays using representative Kenyan strains demonstrated varied levels of tuber maceration ability. The Pectobacterium carotovorum subsp. carotovorum and Pectobacterium carotovorum subsp. brasiliense Kenyan strains were shown to be less aggressive in causing soft rot when compared to type strains. This study describes for the first time the genetic diversity of pectolytic bacteria causing soft rot disease of potatoes in Kenya.


Soft rot Enterobacteriaceae Pectolytic Pectobacterium spp. Kenya 



This work was funded by National Research Foundation-NRF (Grant number 69362) and the University of Pretoria. Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.


  1. Baghaee-Ravari, S., Rahimian, H., Shams-Bakhsh, M., Lopez-Solanilla, E., Antunes-Lamas, M., & Rodriguez-Palenzuela, P. (2011). Characterization of Pectobacterium species from Iran using biochemical and molecular methods. European Journal of Plant Pathology, 129, 413–425.CrossRefGoogle Scholar
  2. Choi, O., & Kim, J. (2013). Pectobacterium carotovorum subsp. brasiliense causing soft rot on paprika in Korea. Journal of Phytopathology, 161, 125–127.CrossRefGoogle Scholar
  3. Costa, A. B., Eloy, M., Cruz, L., Janse, J. D., & Oliveira, H. (2006). Studies on pectolytic Erwinia spp. in Portugal reveal unusual strains of E. carotovora subsp. atroseptica. Journal of Plant Pathology, 88, 161–169.Google Scholar
  4. Czajkowski, R., Pérombelon, M. C. M., van Veen, J. A., & van der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60, 999–1013.CrossRefGoogle Scholar
  5. Darrasse, A., Priou, S., Kotoujansky, A., & Bertheau, Y. (1994). PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Applied and Environmental Microbiology, 60, 1437–1443.PubMedCentralPubMedGoogle Scholar
  6. De Boer, S. H., & Ward, L. J. (1995). PCR detection of Erwinia carotovorum subsp. atrosepticum associated with potato tissue. Phytopathology, 85, 854–858.CrossRefGoogle Scholar
  7. de Haan, E. G., Dekker-Nooren, T. C. E. M., van den Bovenkamp, G. W., Speksnijder, A. G. C. L., van der Zouwen, P. S., & van der Wolf, J. M. (2008). Pectobacterium carotovorum subsp. carotovorum can cause potato blackleg in temperate climates. European Journal of Plant Pathology, 122, 561–569.CrossRefGoogle Scholar
  8. Duarte, V., Boer, S. H. D., Ward, L. J., & Oliveira, A. M. R. D. (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. Journal of Applied Microbiology, 96, 535–545.PubMedCrossRefGoogle Scholar
  9. Gardan, L., Gouy, C., Christen, R., & Samson, R. (2003). Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 381–391.PubMedCrossRefGoogle Scholar
  10. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  11. Hauben, L., Moore, E. R. B., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L., et al. (1998). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Systematic and Applied Microbiology, 21, 384–397.PubMedCrossRefGoogle Scholar
  12. Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W., & Reverchon, S. (1996). Regulation of pectinolysis in Erwinia chrysanthemi. Annual Review of Microbiology, 50, 213–257.PubMedCrossRefGoogle Scholar
  13. Hyman, L. J., Sullivan, L., Toth, I. K., & Perombelon, M. C. M. (2001). Modified crystal violet pectate medium (CVP) based on a new polypectate source (Slendid) for the detection and isolation of soft rot erwinias. Potato Research, 44, 265–270.CrossRefGoogle Scholar
  14. Kang, H. W., Kwon, S. W., & Go, S. J. (2003). PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathology, 52, 127–133.CrossRefGoogle Scholar
  15. Katoh, K., Kuma, K., Toh, H., & Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kim, H.-S., Ma, B., Perna, N. T., & Charkowski, A. O. (2009). Phylogeny and virulence of naturally occurring type III secretion-deficient Pectobacterium strains. Applied and Environmental Microbiology, 75, 4539–4549.Google Scholar
  17. Lee, J.-H., Shin, H., Ji, S., Malhotra, S., Kumar, M., Ryu, S., et al. (2012). Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. Journal of Virology, 86, 8899–8901.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., et al. (2007). Host range and molecular phylogenies of the soft rot Enterobacterial genera Pectobacterium and Dickeya. Phytopathology, 97, 1150–1163.PubMedCrossRefGoogle Scholar
  19. McCarter-Zorner, N. J., Franc, G. D., Harrison, M. D., Michaud, J. E., Quinn, C. E., Sells, A. I., et al. (1984). Soft rot Erwinia bacteria in surface and underground waters in southern Scotland and in Colorado, United States. Journal of Applied Bacteriology, 57, 95–105.CrossRefGoogle Scholar
  20. McCarter-Zorner, N. J., Harrison, M. D., Franc, G. D., Quinn, C. E., Sells, A. I., & Graham, D. C. (1985). Soft rot Erwinia bacteria in the rhizosphere of weeds and crop plants in Colorado, United States and Scotland. Journal of Applied Bacteriology, 59, 357–368.CrossRefGoogle Scholar
  21. Moleleki, L. N., Onkendi, E. M., Mongae, A., & Kubheka, G. C. (2013). Characterisation of Pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. European Journal of Plant Pathology, 135, 279–288.CrossRefGoogle Scholar
  22. Molina, J. J., Harrison, M. D., & Brewer, J. W. (1974). Transmission of Erwinia carotovora var atroseptica by Drosophila melanogaster MEIG1. Acquisition and transmission of the bacterium. American Potato Journal, 51, 245–250.Google Scholar
  23. Muthoni, J., Shimelis, H., & Melis, R. (2013). Potato production in Kenya: farming systems and production constraints. Journal of Agricultural Science, 5, 182–197.Google Scholar
  24. Nabhan, S., De Boer, S. H., Maiss, E., & Wydra, K. (2012a). Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. Journal of Applied Microbiology, 113, 904–913.PubMedCrossRefGoogle Scholar
  25. Nabhan, S., Wydra, K., Linde, M., & Debener, T. (2012b). The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathology, 61, 498–508.CrossRefGoogle Scholar
  26. Naum, M., Brown, E. W., & Mason-Gamer, R. J. (2011). Is a robust phylogeny of the enterobacterial plant pathogens attainable? Cladistics, 27, 80–93.CrossRefGoogle Scholar
  27. Ngadze, E., Brady, C. L., Coutinho, T. A., & van der Waals, J. E. (2012). Pectinolytic bacteria associated with potato soft rot and blackleg in South Africa and Zimbabwe. European Journal of Plant Pathology, 134, 533–549.CrossRefGoogle Scholar
  28. Onkendi, E., Maluleke, N., & Moleleki, L. N. (2013). First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot and blackleg diseases of potatoes in Kenya. Plant Disease. doi: 10.1094/PDIS-09-13-0988-PDN.Google Scholar
  29. Pérombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.CrossRefGoogle Scholar
  30. Perombelon, M. C. M., & van der Wolf, J. M. (1998). Methods for the detection and quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsp. atrosepticum) on potatoes: a laboratory manual. Scottish Crop Research Institute, publication No. 10.Google Scholar
  31. Pirhonen, M., Flego, D., Heikinheimo, R., & Palva, E. T. (1993). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. The EMBO Journal, 12, 2467–2476.PubMedCentralPubMedGoogle Scholar
  32. Pitman, A. R., Wright, P. J., Galbraith, M. D., & Harrow, S. A. (2008). Biochemical and genetic diversity of pectolytic enterobacteria causing soft rot disease of potatoes in New Zealand. Australasian Plant Pathology, 37, 559–568.CrossRefGoogle Scholar
  33. Pitman, A. R., Harrow, S. A., & Visnovsky, S. B. (2010). Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Plant Pathology, 126, 423–435.CrossRefGoogle Scholar
  34. Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics Application Note, 14, 817–818.CrossRefGoogle Scholar
  35. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology, 28, 2731–2739.CrossRefGoogle Scholar
  36. Togashi, J., Uedal, K., & Namai, T. (2001). Diseased tissues in soil and its role as inoculum for soft rot of Chinese cabbage (Brassica campestris, Pekinensis group). Journal of General Plant Pathology, 67, 45–50.CrossRefGoogle Scholar
  37. Toth, I. K., Bertheau, Y., Hyman, L. J., Laplaze, L., López, M. M., McNicol, J., et al. (1999). Evaluation of phenotypic and molecular typing techniques for determining diversity in Erwinia carotovora subsp. atroseptica. Journal of Applied Microbiology, 87, 770–781.PubMedCrossRefGoogle Scholar
  38. Toth, I. K., Avrova, A. O., & Hyman, L. J. (2001). Rapid identification and differentiation of the soft rot Erwinias by 16S-23S intergenic transcribed spacer-PCR and restriction fragment length polymorphism analyses. Applied and Environmental Microbiology, 67, 4070–4076.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Toth, I. K., Bell, K. S., Holeva, M. C., & Birch, P. R. J. (2003). Soft rot erwiniae: from genes to genomes. Molecular Plant Pathology, 4, 17–30.PubMedCrossRefGoogle Scholar
  40. van der Merwe, J. J., Coutinho, T. A., Korsten, L., & van der Waals, J. (2010). Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. European Journal of Plant Pathology, 126, 175–185.CrossRefGoogle Scholar
  41. Yap, M.-N., Barak, J. D., & Charkowski, A. O. (2004). Genomic diversity of Erwinia carotovora subsp. carotovora and its correlation with virulence. Applied and Environmental Microbiology, 70, 3013–3023.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  1. 1.Forestry Agriculture and Biotechnology Institute (FABI), Department of Microbiology and Plant PathologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations