Advertisement

European Journal of Plant Pathology

, Volume 139, Issue 1, pp 1–7 | Cite as

An outbreak of Potato spindle tuber viroid in tomato is linked to imported seed

  • S. L. van Brunschot
  • J. Th. J. Verhoeven
  • D. M. Persley
  • A. D. W. Geering
  • A. Drenth
  • J. E. ThomasEmail author
Article

Abstract

In 2011, an outbreak of the quarantine-regulated pathogen Potato spindle tuber viroid (PSTVd) occurred in a commercial glasshouse-grown tomato crop in Queensland, Australia. Phylogenetic studies showed that the genotype of this isolate grouped in a cluster of PSTVd genotypes from tomato and Physalis peruviana, and exhibited an interesting mutation (U257→A) that has previously been linked to lethal symptom expression in tomato. Transmission studies showed that the viroid could be mechanically transmitted from crushed fruit sap, but not from undamaged fruits. A low rate of asymptomatic infection was determined for plants in the affected glasshouse, demonstrating the efficacy of using symptoms to detect PSTVd infections in tomato. No PSTVd infections were detected in solanaceous weeds located outside of the infected glasshouse, excluding them from playing a role in the viroid epidemiology. Monitoring and subsequent testing of new tomato crops grown in the facility demonstrated successful eradication of the pathogen. A trace-back analysis linked the outbreak of PSTVd to an infected imported tomato seed-lot, indicating that PSTVd is transmitted internationally through contaminated seed.

Keywords

Pospiviroid Solanum lycopersicum Quarantine Inoculation Detection RT-PCR 

Notes

Acknowledgments

The authors would like to acknowledge the support of the Plant Biosecurity Cooperative Research Centre, established and supported under the Australian Government’s Cooperative Research Centres Program.

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.PubMedCrossRefGoogle Scholar
  2. Anonymous (2013). Emergency plant pest response deed. http://www.planthealthaustralia.com.au/epprd/. Accessed 9 August 2013.
  3. Barbetti, M., Mackie, A., Rodoni, B., McKirdy, S., & Jones, R. (2012). Final report CRC10164—Phylogeny, pathogenicity and epidemiology of Potato spindle tuber viroid (PSTVd) and related pospiviroids in Australia. (pp. 1–14): Cooperative Research Centre for National Plant Biosecurity.Google Scholar
  4. Behjatnia, S. A. A., Dry, I. B., Krake, L. R., Conde, B. D., Connelly, M. I., Randles, J. W., et al. (1996). New Potato spindle tuber viroid and tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology, 86, 880–886.CrossRefGoogle Scholar
  5. Bostan, H., Nie, X., & Singh, R. P. (2004). An RT-PCR primer pair for the detection of pospiviroid and its application in surveying ornamental plants for viroids. Journal of Virological Methods, 116, 189–193.PubMedCrossRefGoogle Scholar
  6. Constable, F., & Moran, J. (1996). PCR protocols for the detection of chrysanthemum stunt and potato spindle tuber viroids. Final Report HRDC project PT410; ISBN No: 07306 6557 7. (pp. 1–23).Google Scholar
  7. Elliott, D. R., Alexander, B. J. R., Smales, T. E., Tang, Z., & Clover, G. R. G. (2001). First report of Potato spindle tuber viroid in tomato in New Zealand. Plant Disease, 85, 1027.CrossRefGoogle Scholar
  8. Gibbs, A. J., & Gower, J. C. (1960). The use of a multiple-transfer method in plant virus transmission studies - some statistical points arising in the analysis of results. Annals of Applied Biology, 48, 75–83.CrossRefGoogle Scholar
  9. Hailstones, D. L., Tesoriero, L. A., Terras, M. A., & Dephoff, C. (2003). Detection and eradication of Potato spindle tuber viroid in tomatoes in commercial production in New South Wales, Australia. Australasian Plant Pathology, 32, 317–318.CrossRefGoogle Scholar
  10. Jimenez, M., Siller, J. H., Valdez, J. B., Carrillo, A., & Chaidez, C. (2007). Bidirectional Salmonella enterica serovar Typhimurium transfer between bare/glove hands and green bell pepper and its interruption. International Journal of Environmental Health Research, 17, 381–388.PubMedCrossRefGoogle Scholar
  11. Kryczyński, S., Paduch-Cichal, E., & Skrzeczkowski, L. J. (1988). Transmission of three viroids through seed and pollen of tomato plants. Journal of Phytopathology, 121, 51–57.CrossRefGoogle Scholar
  12. Ling, K. S., & Sfetcu, D. (2010). First report of natural infection of greenhouse tomatoes by Potato spindle tuber viroid in the United States. Plant Disease, 94, 1376.CrossRefGoogle Scholar
  13. Ling, K. S., Li, R., Panthee, D. R., & Gardner, R. G. (2012). First report of Potato spindle tuber viroid naturally infecting greenhouse tomatoes in North Carolina. Plant Disease, 97, 148.CrossRefGoogle Scholar
  14. Lingaas, E., & Fagernes, M. (2009). Development of a method to measure bacterial transfer from hands. Journal of Hospital Infection, 72, 43–49.PubMedCrossRefGoogle Scholar
  15. Mackie, A., McKirdy, S., Rodoni, B., & Kumar, S. (2002). Potato spindle tuber viroid eradicated in Western Australia. Australasian Plant Pathology, 31, 311–312.CrossRefGoogle Scholar
  16. Mumford, R. A., Jarvis, B., & Skelton, A. (2004). The first report of Potato spindle tuber viroid (PSTVd) in commercial tomatoes in the UK. Plant Pathology, 53, 242.CrossRefGoogle Scholar
  17. Owens, R. A. (2000). Viroid diseases of plants. In C. J. Hurst (Ed.), Viral ecology (pp. 353–381). New York: Academic Press.CrossRefGoogle Scholar
  18. Puchta, H., Herold, T., Verhoeven, K., Roenhorst, A., Ramm, K., Schmidt-Puchta, W., et al. (1990). A new strain of Potato spindle tuber viroid (PSTVd-N) exhibits major sequence differences as compared to all other PSTVd strains sequenced so far. Plant Molecular Biology, 15, 509–511.PubMedCrossRefGoogle Scholar
  19. Qi, Y., & Ding, B. (2003). Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. The Plant Cell, 15, 1360–1374.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967.Google Scholar
  21. Shamloul, A. M., Hadidi, A., Zhu, S. F., Singh, R. P., & Sagredo, B. (1997). Sensitive detection of Potato spindle tuber viroid using RT-PCR and identification of a viroid variant naturally infecting pepino plants. Canadian Journal of Plant Pathology, 19, 89–96.CrossRefGoogle Scholar
  22. Singh, R. P. (1970). Seed transmission of potato spindle tuber virus in tomato and potato. American Journal of Potato Research, 47, 225–227.CrossRefGoogle Scholar
  23. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Verhoeven, J. T. J., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.CrossRefGoogle Scholar
  25. Verhoeven, J. T. J., Jansen, C. C. C., Roenhorst, J. W., Steyer, S., & Michelante, D. (2007). First report of Potato spindle tuber viroid in tomato in Belgium. Plant Disease, 91, 1055.CrossRefGoogle Scholar
  26. Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010a). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources of Potato spindle tuber viroid inoculum for tomato. Plant Pathology, 59, 3–12.CrossRefGoogle Scholar
  27. Verhoeven, J. T. J., Hüner, L., Marn, M., Plesko, I., & Roenhorst, J. (2010b). Mechanical transmission of Potato spindle tuber viroid between plants of Brugmansia suaveoles, Solanum jasminoides and potatoes and tomatoes. European Journal of Plant Pathology, 128, 417–421.CrossRefGoogle Scholar
  28. Viršček Marn, M., & Mavrič Pleško, I. (2012). First report of Potato spindle tuber viroid in cape gooseberry in Slovenia. Plant Disease, 96, 150.CrossRefGoogle Scholar
  29. Ward, L., Tang, J., Veerakone, S., Quinn, B., Harper, S., Delmiglio, C., et al. (2010). First report of Potato spindle tuber viroid in cape gooseberry (Physalis peruviana) in New Zealand. Plant Disease, 94, 479.CrossRefGoogle Scholar

Copyright information

© KNPV 2014

Authors and Affiliations

  • S. L. van Brunschot
    • 1
    • 2
  • J. Th. J. Verhoeven
    • 3
  • D. M. Persley
    • 4
  • A. D. W. Geering
    • 5
  • A. Drenth
    • 5
  • J. E. Thomas
    • 5
    Email author
  1. 1.Plant Biosecurity Cooperative Research CentreBruceAustralia
  2. 2.School of Agriculture and Food SciencesThe University of QueenslandSt LuciaAustralia
  3. 3.National Plant Protection OrganizationNational Reference CentreWageningenThe Netherlands
  4. 4.Queensland Department of Agriculture, Fisheries and Forestry, Ecosciences PrecinctDutton ParkAustralia
  5. 5.Centre for Plant Science, Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandSt LuciaAustralia

Personalised recommendations