European Journal of Plant Pathology

, Volume 138, Issue 3, pp 431–447 | Cite as

Phylogeny and evolution of plant pathogenic oomycetes—a global overview

  • Marco Thines
Special Issue "Wild Plant Pathosystems"


Oomycetes have colonised all continents and oceans in a great variety of habitats and are arguably one of the most successful eukaryotic lineages. This is contrasted by the limited knowledge available for this group in various fields in comparison to other ubiquitous eukaryotes, such as unikont fungi, animals or plants. In this review an overview is given on the evolution and diversification of the oomycetes, with focus on the plant parasitic lineages and aspects of wild pathosystems.


Diversity Ecology Evolution Oomycota Review Straminipila Wild pathosystems 



The excellence initiative LOEWE of the federal state of Hessen is gratefully acknowledged for funding in the framework of the Biodiversity and Climate Research Centre (BiK-F) and the cluster for Integrative Fungal Research (IPF).


  1. Aegerter, B. J., Nuñez, J. J., & Davis, R. M. (2003). Environmental factors affecting rose downy mildew and development of a forecasting model for a nursery production system. Plant Disease, 87, 732–738.Google Scholar
  2. Aylor, D. E., Taylor, G. S., & Raynor, G. S. (1982). Long-range transport of tobacco blue mold spores. Agricultural Meteorology, 27, 217–232.Google Scholar
  3. Bala, K., Robideau, G., Lévesque, A., de Cock, W. A., Abad, Z. G., Lodhi, A., & Coffey, M. D. (2010). Phytopythium. Persoonia, 24, 136–137.Google Scholar
  4. Barr, D. J., & Désaulniers, N. L. (1990). The life cycle Lagena radicola, an oomycetous parasite of wheat roots. Canadian Journal of Botany, 68, 2112–2118.Google Scholar
  5. Bartnicki-Garcia, S. (1968). Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology, 22, 87–108.PubMedGoogle Scholar
  6. Baxter, L., Tripathy, S., Ishaque, N., Boot, N., Cabral, A., Kemen, E., et al. (2010). Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science, 330, 1149–1151.Google Scholar
  7. Beakes, G. W., & Sekimoto, S. (2009). The evolutionary phylogeny of oomycetes−insights gained from studies of holocarpic parasites of algae and invertebrates. In K. Lamour & S. Kamoun (Eds.), Oomycete genetics and genomics: Diversity, interactions and research tools (pp. 1–24). New York: Wiley.Google Scholar
  8. Beakes, G. W., Glockling, S. L., & Sekimoto, S. (2012). The evolutionary phylogeny of the oomycete “fungi”. Protoplasma, 249, 3–19.PubMedGoogle Scholar
  9. Begerow, D., Stoll, M., & Bauer, R. (2006). A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia, 98, 906–916.PubMedGoogle Scholar
  10. Belbahri, L., Calmin, G., Pawlowski, J., & Lefort, F. (2005). Phylogenetic analysis and real time PCR detection of a presumbably undescribed Peronospora species on sweet basil and sage. Mycological Research, 109, 1276–1287.PubMedGoogle Scholar
  11. Ben-Ze’ev, I. S., Kenneth, R. G., & Bonde. (1987). Peronospora radii de By., a causal agent of downy mildew of Anthemideae: complementary description and new hosts recorded in Israel. Phytoparasitica, 15, 51–67.Google Scholar
  12. Biga, M. L. (1955). Riesaminazione delle specie del genre Albugo in base alla morfologia dei conidi. Sydowia, 9, 339–358.Google Scholar
  13. Blair, J. E., Coffey, M. D., Park, S.-Y., Geiser, D. M., & Kang, S. (2008). A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genetics and Biology, 45, 266–277.PubMedGoogle Scholar
  14. Bock, C. H., Jeger, M. J., Fitt, B. D., & Sherington, J. (1997). Effect of wind on the dispersal of oospores of Peronosclerospora sorghi from sorghum. Plant Pathology, 46, 439–449.Google Scholar
  15. Borhan, M. H., Gunn, N., Cooper, A., Gulden, S., Tör, M., Rimmer, S. R., & Holub, E. B. (2008). WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Molecular Plant-Microbe Interactions, 21, 757–768.PubMedGoogle Scholar
  16. Brasier, C. M., Kirk, S. A., Delcan, J., de Cooke, Jung, T., & Man In’t Veld, W. A. (2004). Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research, 108, 1172–1184.PubMedGoogle Scholar
  17. Bridge, P. D., Newsham, K. K., & Denton, G. J. (2008). Snow mould caused by a Pythium sp.: a potential vascular plant pathogen in the maritime Antarctic. Plant Pathology, 57, 1066–1072.Google Scholar
  18. Brown, J. (1997). Fungi with aseptate hyphae and no dikaryophase. In Plant pathogens and plant diseases (pp. 49–59). Armidale: Rockvale Publications.Google Scholar
  19. Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, Å., Nikolaev, S. I., Jakobsen, K. S., & Pawlowski, J. (2007). Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE, 8, 790–795.Google Scholar
  20. Chérif, M., Menzies, J. G., Ehret, D. L., Bogdanoff, C., & Bélanger, R. R. (1994). Yield of cucumber infected with Pythium aphanidermatum when grown with soluble silicon. HortScience, 29, 896–897.Google Scholar
  21. Choi, D., & Priest, M. J. (1995). A key to the genus Albugo. Mycotaxon, 53, 261–272.Google Scholar
  22. Choi, Y.-J., Shin, H.-D., Hong, S.-B., & Thines, M. (2007). Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity, 27, 11–34.Google Scholar
  23. Choi, Y.-J., Shin, H.-D., Ploch, S., & Thines, M. (2008). Evidence for uncharted biodiversity in the Albugo candida complex, with the description of a new species. Mycological Research, 112, 1327–1334.PubMedGoogle Scholar
  24. Choi, Y.-J., Shin, H.-D., & Thines, M. (2009). Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycological Research, 113, 1340–1350.PubMedGoogle Scholar
  25. Choi, Y.-J., Shin, H.-D., Ploch, S., & Thines, M. (2011a). Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biology, 115, 598–607.PubMedGoogle Scholar
  26. Choi, Y.-J., Thines, M., & Shin, H.-D. (2011b). A new perspective on the evolution of white blister rusts: Albugo s.str. (Albuginales; Oomycota) is not restricted to Brassicales but also present on Fabales. Organisms, Diversity and Evolution, 11, 193–199.Google Scholar
  27. Choi, Y.-J., Thines, M., Runge, F., Hong, S.-B., Telle, S., & Shin, H.-D. (2011c). Evidence for high degrees of specialisation evolutionary diversity and morphological distinctiveness in the genus Bremia. Fungal Biology, 115, 102–111.PubMedGoogle Scholar
  28. Coffey, M. D. (1975). Ultrastructural features of the haustorial apparatus of the white blister rust Albugo candida. Canadian Journal of Botany, 53, 1285–1299.Google Scholar
  29. Constantinescu, O. (1989). Peronospora complex on compositae. Sydowia, 41, 79–107.Google Scholar
  30. Constantinescu, O. (1991). An annotated list of Peronospora names. Thunbergia, 15, 1–110.Google Scholar
  31. Constantinescu, O., & Fatehi, J. (2002). Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia, 74, 291–338.Google Scholar
  32. Constantinescu, O., & Thines, M. (2010). Plasmopara halstedii is absent from Australia and New Zealand. Polish Botanical Journal, 55, 293–298.Google Scholar
  33. Cooke, D. E., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology, 30, 17–32.PubMedGoogle Scholar
  34. Cooper, A., Woods-Tör, A. M., & Holub, E. B. (2002). Albugo candida (white rust) suppresses resistance to downy mildew pathogens in Arabidopsis thaliana. Plant Protection Science, 38, 474–476.Google Scholar
  35. Cooper, A. J., Latunde-Dada, A. O., Woods-Tör, A., Lynn, J., Lucas, J. A., Crute, I. R., & Holub, E. B. (2008). Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. Molecular Plant-Microbe Interactions, 21, 745–756.PubMedGoogle Scholar
  36. Davidson, J. M., Werres, S., Garbelotto, M., Hansen, E. M., & Rizzo, D. M. (2003). Sudden oak death and associated diseases caused by Phytophthora ramorum. Online Plant Health Progress, 10, 2003–0707.Google Scholar
  37. de Bary, H. A. (1876). Researches into the nature of the potato fungus, Phytophthora infestans. Journal of the Royal Agricultural Society of England, Ser, 2, 239–269.Google Scholar
  38. de Cock, A. (1986). Marine Pythiaceae from decaying seaweeds in the Netherlands. Mycotaxon, 25, 101–110.Google Scholar
  39. Dick, M. W. (2001). Straminipilous fungi: Systematics of the peronosporomycetes ıncluding accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. Dordrecht: Kluwer Academic Publishers.Google Scholar
  40. Dick, M. W. (2002). Towards an understanding of the evolution of the downy mildews. Advances in Downy Mildew Research, 1, 1–57.Google Scholar
  41. Dick, M. W., Wong, P. T., & Clark, G. (1984). The identity of the oomycete causing “Kikuyu Yellows”, with a reclassification of the downy mildews. Botanical Journal of the Linneaen Society, 89, 171–197.Google Scholar
  42. Dick, M. W., Croft, B. J., Magary, R. C., de Cock, A., & Clark, G. (1988). A new genus of the Verrucalvaceae (Oomycetes). Botanical Journal of the Linneaen Society, 99, 97–113.Google Scholar
  43. Diéguez-Uribeondo, J., Garcia, M. A., Cerenius, L. T., Kozubikova, E., Ballesteros, I., Windels, C., et al. (2009). Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (Oomcyetes). Fungal Genetics and Biology, 46, 365–376.PubMedGoogle Scholar
  44. Ellis, J. G., & Dodds, P. N. (2011). Showdown at the RXLR motif: serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells. PNAS, 108, 14381–14382.PubMedGoogle Scholar
  45. Emerson, R., & Natvig, D. O. (1981). Adaptation of fungi to stagnant waters. In D. T. Wicklow & G. C. Caroll (Eds.), The fungal community, ıts organization and role in the ecosystem (pp. 109–128). New York: Marcel Dekker.Google Scholar
  46. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS Press.Google Scholar
  47. Fraymouth, J. (1956). Haustoria of the peronosporales. Transactions of the British Mycological Society, 39, 79–107.Google Scholar
  48. Gaulin, E., Jacquet, C., Bottin, A., & Dumas, B. (2007). Root rot disease of legumes caused by Aphanomyces euteiches. Molecular Plant Pathology, 8, 539–548.PubMedGoogle Scholar
  49. Gaulin, E., Madoui, A.-M., Bottin, A., Jacquet, C., Mathe, C., Couloux, A., et al. (2008). Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenecity factors and metabolic pathways. PLoS ONE, 4, e1723.Google Scholar
  50. Gäumann, E. (1918). Über die Formen der Peronospora parasitica (Pers.) Fries. Beihefte zum Botanischen Centralblatt, 35, 395–533.Google Scholar
  51. Gäumann, E. (1923). Beiträge zu einer Monographie der Gattung Peronospora Corda. Beiträge zur Kryptogamenflora der Schweiz, 5, 1–360.Google Scholar
  52. Gilles, T., Phelps, K., Clarkson, J. P., & Kennedy, R. (2004). Development of MILIONCAST, an improved model for predicting downy mildew sporulation on onions. Plant Disease, 88, 695–702.Google Scholar
  53. Gleason, F. (1976). The physiology of lower freshwater fungi. In Recent advances in aquatic mycology (pp. 543–572). London: Elek Press.Google Scholar
  54. Glockling, S. L., & Beakes, G. W. (2001). Two new species of Haptoglossa from N.E. England, H. northumbrica and H. polymorpha. Botanical Journal of the Linneaen Society, 136, 329–338.Google Scholar
  55. Göker, M., Voglmayr, H., Riethmüller, A., Weiss, M., & Oberwinkler, F. (2003). Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Canadian Journal of Botany, 81, 672–683.Google Scholar
  56. Göker, M., Riethmüller, A., Voglmayr, H., Weiß, M., & Oberwinkler, F. (2004). Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycological Progress, 3, 83–94.Google Scholar
  57. Göker, M., Voglmayr, H., Riethmüller, A., & Oberwinkler, F. (2007). How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genetics and Biology, 44, 105–122.PubMedGoogle Scholar
  58. Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H., Handsaker, R. E., Cano, L. M., et al. (2009). Genome sequence and comparative analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461, 393–398.PubMedGoogle Scholar
  59. Hakariya, M., Hirose, D., & Tokumasu, S. (2007). A molecular phylogeny of Haptoglossa species, terrestrial peronosporomycetes (Oomycetes) endoparasitic on nematodes. Mycoscience, 48, 169–175.Google Scholar
  60. Hakariya, M., Hirose, D., & Tokumasu, S. (2009). Molecular phylogeny of terrestrial holocarpic endoparasitic peronosporomycetes Haptoglossa spp. inferred from 18S rDNA. Mycoscience, 50, 130–136.Google Scholar
  61. Hall, G. (1989). Unusual or interesting records of plant pathogenic oomycetes. Plant Pathology, 38, 604–611.Google Scholar
  62. Hatai, K. (2012). Diseases of fish and shellfish caused by marine fungi. In C. Raghukumar (Ed.), Biology of marine fungi (pp. 15–52). Berlin: Springer.Google Scholar
  63. Heller, A., & Thines, M. (2009). Evidence for the importance of enzymatic digestion of epidermal walls during subepidermal sporulation and pustule opening in white blister rusts (Albuginaceae). Mycological Research, 113, 657–667.PubMedGoogle Scholar
  64. Ho, H. H., & Jong, S. C. (1990). Halophytophthora, gen. nov., a new member of the family Pythiaceae. Mycotaxon, 36, 377–382.Google Scholar
  65. Ho, H. H., Chang, H. S., & Hsieh, S. Y. (1991). Halophytophthora kandeliae, a new marine fungus from Taiwan. Mycologia, 83, 419–424.Google Scholar
  66. Ho, H. H., Nakagiri, A., & Newell, S. Y. (1992). A new species of Halophytophthora from atlantic and pacific subtropical islands. Mycologia, 84, 548–554.Google Scholar
  67. Ho, H. H., Chang, H. S., & Huang, S. H. (2003). Halophytophthora elongata, a new marine species from Taiwan. Mycotaxon, 85, 417–422.Google Scholar
  68. Holmes, G. J., Main, C. E., & Keever, Z. T., III. (2004). Cucurbit downy mildew: a unique pathosystem for disease forecasting. Advances in Downy Mildew Research, 2, 69–80.Google Scholar
  69. Hughes, K. A., Lawley, B., & Newsham, K. K. (2003). Solar UV-B radiation inhibits the growth of antarctic terrestrial fungi. Applied and Environmental Microbiology, 69, 1488–1491.PubMedCentralPubMedGoogle Scholar
  70. Hulvey, J., Telle, S., Nigrelli, L., Lamour, K., & Thines, M. (2010). Salisapiliaceae−a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia, 25, 109–116.PubMedCentralPubMedGoogle Scholar
  71. Inaba, T., Takahashi, K., & Morinaka, T. (1983). Seed transmission of spinach downy mildew. Plant Disease, 67, 1139–1141.Google Scholar
  72. Jacobson, D. J., LeFebvre, S. H., Ojerio, R. S., Berwald, N., & Heikkinen, E. (1998). Persistent, systemic, asymptomatic infections of Albugo candida, an oomycete parasite, detected in three wild crucifer species. Canadian Journal of Botany, 76, 739–750.Google Scholar
  73. Johnson, T. W., & Seymour, R. L. (1974). Aquatic fungi of ıceland: comparative morphology of Achlya spiracaulis and Achlya papillosa. Nova Hedwigia, 25, 433–449.Google Scholar
  74. Kale, S. D., Gu, B., Capelluto, D. G., Dou, D., Feldman, E., Rumore, A., et al. (2010). External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell, 142, 284–295.PubMedGoogle Scholar
  75. Karling, J. S. (1981). Predominantly holocarpic and eucarpic simple biflagellate phycomycetes. Vaduz: J. Cramer.Google Scholar
  76. Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A. C., Balmuth, A. L., Robert-Seilaniantz, A., et al. (2011). Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biology, 9, e1001094.PubMedCentralPubMedGoogle Scholar
  77. Kemler, M., Göker, M., & Begerow, D. (2006). Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes). BMC Evolutionary Biology, 6, 35.PubMedCentralPubMedGoogle Scholar
  78. Kemler, M., Lutz, M., Göker, M., Oberwinkler, F., & Begerow, D. (2009). Hidden diversity in the non‐caryophyllaceous plant‐parasitic members of Microbotryum (Pucciniomycotina: Microbotryales). Systematics and Biodiversity, 7, 297–306.Google Scholar
  79. Kemler, M., Martín, M. P., Telleria, M. T., Schäfer, A. M., Yurkov, A., & Begerow, D. (2013). Contrasting phylogenetic patterns of anther smuts (Pucciniomycotina: Microbotryum) reflect phylogenetic patterns of their caryophyllaceous hosts. Organisms, Diversity and Evolution, 13, 11–126.Google Scholar
  80. Kenneth, R. G. (1981). Downy mildews of graminaceous crops. In D. M. Spencer (Ed.), The downy mildews (pp. 367–394). London: Academic Press.Google Scholar
  81. Khunti, J. P., Khandar, R. R., & Bhoraniya, M. F. (2000). Studies on host range of Albugo cruciferarum the incitant of white rust of mustard. Agricultural Science Digest, 20, 219–221.Google Scholar
  82. Kim, K. S., Beresford, R. M., & Walter, M. (2013). Development of a disease risk prediction model for downy mildew (Peronospora sparsa) in boysenberry. Phytopathology, in press.Google Scholar
  83. Kofoet, A., & Zinkernagel, V. (1991). Light and electron microscopical studies of interactions between Allium spp. and Peronospora destructor. Mycological Research, 95, 278–283.Google Scholar
  84. Koike, S. T., Fogle, D., Tjosvold, S. A., & King, A. I. (2004). Downy mildew caused by Peronospora radii on Marguerite Daisy (Argyranthemum frutescens) in California. Plant Disease, 88, 1163.Google Scholar
  85. Krajaejun, T., Khositnithikul, R., Lerksuthirat, T., Lowhnoo, T., Rujirawat, T., Petchthong, T., et al. (2011). Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum. Fungal Biology, 115, 683–696.PubMedGoogle Scholar
  86. Krings, M., Taylor, T. N., & Dotzler, N. (2011). The fossil record of the Peronosporomycetes (Oomycota). Mycologia, 103, 445–457.Google Scholar
  87. Kühn, S. F., Medlin, L. K., & Eller, G. (2004). Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist, 155, 143–156.PubMedGoogle Scholar
  88. Lamour, K. H., Mudge, J., Gobena, D., Hurtado-Gonzales, O. P., Schmutz, J., Kuo, A., et al. (2012). Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Molecular Plant-Microbe Interactions, 25, 1350–1360.PubMedCentralPubMedGoogle Scholar
  89. Landa, B. B., Montes-Borrego, M., Muñoz-Ledesma, F. J., & Jiménez-Díaz, R. M. (2007). Phylogenetic analysis of downy mildew pathogens of opium poppy and PCR-based in planta and seed detection of Peronospora arborescens. Phytopathology, 97, 1380–1390.PubMedGoogle Scholar
  90. Lara, E., & Belbahri, L. (2011). SSU rRNA reveals major trends in oomycete evolution. Fungal Diversity, 49, 93–100.Google Scholar
  91. Lebeda, A., & Cohen, Y. (2011). Cucurbit downy mildew (Pseudoperonospora cubensis)−biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology, 129, 157–192.Google Scholar
  92. Lefort, F., Gigon, V., & Amos, B. (2003). Le mildiou s’étend. Déjà détecté dans des nombreux pays européens, Peronospora lamii, responsible du mildiou de basilic, a été observe en Suisse dans la region lémanique. Réussir Fruits et Légumes, 223, 66.Google Scholar
  93. Levesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., et al. (2010). Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 11, R73.PubMedCentralPubMedGoogle Scholar
  94. Madden, L. V., Ellis, M. A., Lalancette, N., Hughes, G., & Wilson, L. L. (2000). Evaluation of a disease warning system for downy mildew of grapes. Plant Disease, 84, 549–554.Google Scholar
  95. Martin, F. N., & Tooley, P. W. (2008). Phylogenetic relationships of Phytophthora ramorum, P. nemorosa and P. pseudosyringe, three species recovered from areas in California with sudden oak death. Mycological Research, 107, 1379–1391.Google Scholar
  96. McTaggart, A. R., Shivas, R. G., Geering, A. D., Vánky, K., & Scharaschkin, T. (2012). A review of the Ustilago-Sporisorium-Macalpinomyces complex. Persoonia, 29, 55.PubMedCentralPubMedGoogle Scholar
  97. Mirzaee, Ploch, S., Runge, F., Telle, S., Nigrelli, L., & Thines, M. (2013). A new presumably widespread species of Albugo parasitic to Strigosella spp. (Brassicaceae). Mycological Progress, 12, 45–52.Google Scholar
  98. Morgan, W., & Kamoun, S. (2007). RXLR effors of plant pathogenic oomycetes. Current Opinion in Microbiology, 10, 332–338.PubMedGoogle Scholar
  99. Nakagiri, A. (2000). Ecology and biodiversity of Halophytophthora species. Fungal Diversity, 5, 153–164.Google Scholar
  100. Nakagiri, A., Newell, S. Y., & Ito, T. (1994). Two new Halophytophthora species, H. tartarea and H. masteri, from intertidal decomposing leaves in saltmarsh and mangrove regions. Mycoscience, 38, 223–232.Google Scholar
  101. Newell, S. Y., Cefalu, R., & Fell, J. W. (1977). Myzocytium, Haptoglossa, and Gonimochaete (fungi) in littoral marine nematodes. Bulletin of Marine Sciences, 27, 177–207.Google Scholar
  102. Nigrelli, L., & Thines, M. (2013). Tropical oomycetes in the German Bight−Climate warming or overlooked diversity? Fungal Ecology, 6, 152–160.Google Scholar
  103. Petrie, G. A. (1975). Prevalence of oospores of Albugo cruciferarum in Brassica seed samples from western Canada, 1967–73. Canadian Plant Disease Survey, 55, 19–24.Google Scholar
  104. Petrie, G. A. (1988). Races of Albugo candida (white rust and staghead) on cultivated Cruciferae in Saskatchewan. Canadian Journal of Plant Pathology, 10, 142–150.Google Scholar
  105. Ploch, S., & Thines, M. (2011). Obligate biotrophic pathogens of the genus Albugo are widespread as asymptomatic endophytes in natural populations of Brassicaceae. Molecular Ecology, 20, 3692–3699.PubMedGoogle Scholar
  106. Ploch, S., Choi, Y.-J., Rost, C., Shin, H.-D., Schilling, E., & Thines, M. (2010). Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Molecular Phylogenetics and Evolution, 57, 812–820.PubMedGoogle Scholar
  107. Ploch, S., Telle, S., Choi, Y.-J., Cunnington, J., Priest, M., Rost, C., et al. (2011). The molecular phylogeny of the white blister rust genus Pustula reveals a case of underestimated biodiversity with several undescribed species on ornamentals and crop plants. Fungal Biology, 115, 214–219.PubMedGoogle Scholar
  108. Podger, F. D. (1972). Phytophthora cinnamomi, a cause of lethal disease in indigenous plant communities in Western Australia. Phytopathology, 62, 972–981.Google Scholar
  109. Pound, G. A., & Williams, P. H. (1963). Biological races of Albugo candida. Phytopathology, 53, 1146–1149.Google Scholar
  110. Riethmüller, A., Weiss, M., & Oberwinkler, F. (1999). Phylogenetic studies of Saprolegniomycetidae and related groups based on nuclear large subunit ribosomal DNA sequences. Canadian Journal of Botany, 77, 1790–1800.Google Scholar
  111. Riethmüller, A., Voglmayr, H., Göker, M., Weiss, M., & Oberwinkler, F. (2002). Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia, 94, 834–849.PubMedGoogle Scholar
  112. Riisberg, I., Orr, R. J., Kluge, R., Shalchian-Tabrizi, K., Bowers, H. A., Patil, V., et al. (2009). Seven gene phylogeny of heterokonts. Protist, 160, 191–204.PubMedGoogle Scholar
  113. Rost, C., & Thines, M. (2012). A new species of Pustula (Oomycetes, Albuginales) is the causal agent of sunflower white rust. Mycological Progress, 11, 351–359.Google Scholar
  114. Ruhland, W. (1904). Studien über die Befruchtung der Albugo lepigoni etc. Jahrbücher der Wissenschaftlichen Botanik, 39, 135–166.Google Scholar
  115. Runge, F., & Thines, M. (2009). A potential perennial host for Pseudoperonospora cubensis in temperate regions. European Journal of Plant Pathology, 123, 483–486.Google Scholar
  116. Runge, F., & Thines, M. (2012). Re-Evaluation of host specificity of the closely related species Pseudoperonospora humuli and P. cubensis. Plant Disease, 96, 55–61.Google Scholar
  117. Runge, F., Telle, S., Ploch, S., Savory, E., Day, B., Sharma, R., & Thines, M. (2011a). The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus, 2, 163–171.PubMedCentralPubMedGoogle Scholar
  118. Runge, F., Choi, Y.-J., Thines, M. (2011b). Phylogenetic investigations in the genus Pseudoperonospora, reveal overlooked species and cryptic diversity in the P. cubensis species cluster. European Journal of Plant Pathology, 129, 135–146.Google Scholar
  119. Runge, F., Ndambi, B., & Thines, M. (2012). Which morphological characteristics are most influenced by the host matrix in downy mildews? A Case Study in Pseudoperonospora cubensis. PLoS ONE, 7, e44863.PubMedCentralPubMedGoogle Scholar
  120. Schnepf, E., Deichgräber, G., & Drebes, G. (1977). Development and ultrastructure of the marine, parasitic oomcete, Lagenisma coscinodisci (Lagenidiales): sexual reproduction. Canadian Journal of Botany, 56, 1315–1325.Google Scholar
  121. Schornack, S., van Damme, M., Bozkurt, T. O., Cano, L. M., Smoker, M., Thines, M., et al. (2010). Ancient class of translocated oomycete effectors targets the host nucleus. PNAS, 107, 17421–17426.PubMedGoogle Scholar
  122. Schubert, R., Bahnweg, G., Nechwatal, J., Jung, T., Cooke, D. E., Duncan, J. M., et al. (1999). Detection and quantification of Phytophthora species which are associated with root-rot diseases in European deciduous forests by species-specific polymerase chain reaction. Forest Pathology, 29, 169–188.Google Scholar
  123. Schurko, A. M., Mendoza, L., Lévesque, C. A., Désaulniers, N. L., de Cock, A., & Klassen, G. R. (2004). A molecular phylogeny of Pythium insidiosum. Mycological Research, 107, 537–544.Google Scholar
  124. Seidl, M. F., Van den Ackerveken, G., Govers, F., & Snel, B. (2011). A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiology, 155, 628–644.PubMedCentralPubMedGoogle Scholar
  125. Sekimoto, S., Hatai, K., & Honda, D. (2007). Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small and large subunit rDNA genes and mitochondrial-encoded cox2 gene. Mycoscience, 48, 212–221.Google Scholar
  126. Sekimoto, S., Beakes, G. W., Gachon, C. M., Müller, D. G., Küpper, F. C., & Honda, D. (2008a). The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist, 159, 401–412.Google Scholar
  127. Sekimoto, S., Yokoo, K., Kawamura, Y., & Honda, D. (2008b). Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, stramenopiles), a unicellular obligate endoparasite of Porphyra spp. (Bangiales, Rhodophyta). Mycological Research, 112, 361–374.PubMedGoogle Scholar
  128. Shetty, H. S., Neergaard, P., & Mathur, S. B. (1977). Demonstration of seed transmission of downy mildew or green ear disease, Sclerospora graminicola, in pearl millet, Pennisetum typhoides. Proceedings of the National Science Academy of India, Section B, 43, 201–206.Google Scholar
  129. Shivas, R. G., Ryley, M. J., Telle, S., Liberato, J. R., & Thines, M. (2012). Peronosclerospora australiensis sp. nov. and Peronosclerospora sargae sp. nov., two newly recognised downy mildews in northern Australia, and their biosecurity implications. Australasian Plant Pathology, 41, 125–130.Google Scholar
  130. Skidmore, D. I., & Ingram, D. S. (1985). Conidial morphology and specialization of Bremia lactucae Regel (Peronosporaceae) on hosts in the family Compositae. Botanical Journal of the Linnean Society, 91, 503–522.Google Scholar
  131. Soylu, E. M., Soylu, S., Keshavarzi, M., Brown, I., & Mansfield, J. W. (2003). Ultrastructural characterization of the intereactions between Arabidopsis thaliana and Albugo candida. Physiological and Molecular Plant Pathology, 63, 201–211.Google Scholar
  132. Sparrow, F. K. (1960). Aquatic phycomycetes (2nd ed.). Ann Arbor: University of Michigan Press.Google Scholar
  133. Spencer, M. A., & Dick, M. W. (2002). Aspects of graminicolous downy mildew biology: Perspectives for tropical plant pathology and Peronosporomycetes phylogeny. In R. Watling, S. Isaac, & C. H. Robinson (Eds.), Tropical mycology, vol 2, micromycetes (pp. 63–81). London: CABI Publishing.Google Scholar
  134. Tan, T. K., & Pek, C. L. (1997). Tropical mangrove leaf litter fungi in Singapore with an emphasis on Halophytophthora. Mycological Research, 101, 165–168.Google Scholar
  135. Taylor, T. N., Krings, M., & Keri, H. (2006). Hassiella monspora gen. et sp. nov., a microfungus from the 400 million year old Rhynie chert. Mycological Research, 110, 628–632.PubMedGoogle Scholar
  136. Telle, S., & Thines, M. (2012). Reclassification of an enigmatic downy mildew species on lovegrass (Eragrostis) to the new genus Eraphthora with a key to the genera of the Peronosporaceae. Mycological Progress, 11, 121–129.Google Scholar
  137. Telle, S., Shivas, R. G., Ryley, M. J., & Thines, M. (2011). Molecular phylogenetic analysis of Peronosclerospora (Oomycetes) reveals cryptic species and genetically distinct species parasitic to maize. European Journal of Plant Pathology, 130, 521–528.Google Scholar
  138. Thines, M. (2006). Evaluation of characters available from herbarium vouchers for the phylogeny of the downy mildew genera (Chromista, Peronosporales), with focus on scanning electron microscopy. Mycotaxon, 97, 195–218.Google Scholar
  139. Thines, M. (2009). Bridging the gulf: Phytophthora and downy mildews are connected by rare grass parasites. PLoS ONE, 4, e4790.PubMedCentralPubMedGoogle Scholar
  140. Thines, M. (2010). Evolutionary history and diversity of white blister rusts. Polish Botanical Journal, 55, 259–264.Google Scholar
  141. Thines, M., & Kamoun, S. (2010). Oomycete-plant coevolution: recent advances and future prospects. Current Opinion in Plant Biology, 13, 427–433.PubMedGoogle Scholar
  142. Thines, M., & Kummer, V. (2013). Diversity and species boundaries in floricolous downy mildews. Mycological Progress, 12, 321–329.Google Scholar
  143. Thines, M., & Spring, O. (2005). A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon, 92, 443–458.Google Scholar
  144. Thines, M., & Voglmayr, H. (2009). An introduction to the white blister rusts (Albuginales). In K. Lamour & S. Kamoun (Eds.), Oomycete genetics and genomics: Diversity, interactions and research tools (pp. 77–92). New York: Wiley.Google Scholar
  145. Thines, M., Göker, M., Spring, O., Oberwinkler, F. (2006). A revision of Bremia graminicola. Mycological Research, 110, 646–656.Google Scholar
  146. Thines, M., Göker, M., Oberwinkler, F., & Spring, O. (2007). A revision of Plasmopara penniseti, with implications for the host range of the downy mildews with pyriform haustoria. Mycological Research, 111, 1377–1385.PubMedGoogle Scholar
  147. Thines, M., Göker, M., Telle, S., Ryley, M., Mathur, K., Narayana, Y. D., et al. (2008). Phylogenetic relationships in graminicolous downy mildews based on cox2 sequence data. Mycological Research, 112, 345–351.PubMedGoogle Scholar
  148. Thines, M., Choi, Y.-J., Kemen, E., Ploch, S., Holub, E. B., Shin, H.-D., & Jones, J. D. (2009a). A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia, 22, 123–128.PubMedCentralPubMedGoogle Scholar
  149. Thines, M., Telle, S., Ploch, S., & Runge, F. (2009b). Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycological Research, 113, 532–540.PubMedGoogle Scholar
  150. Thines, M., Voglmayr, H., & Göker, M. (2009c). Taxonomy and phylogeny of the downy mildews. In K. Lamour & S. Kamoun (Eds.), Oomycete genetics and genomics: Diversity, interactions and research tools (pp. 47–75). New York: Wiley.Google Scholar
  151. Thines, M., Runge, F., Telle, S., & Voglmayr, H. (2011). Phylogenetic investigations in the downy mildew genus Bremia reveal several distinct lineages and a species with a presumably exceptional wide host range. European Journal of Plant Pathology, 129, 81–89.Google Scholar
  152. Tong, S. M. (1995). Developayella elegans nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton. European Journal of Protistology, 31, 24–31.Google Scholar
  153. Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H., Aerts, A., et al. (2006). Phytophthora genome sequences uncover the evolutionary origins and mechanisms of pathogenesis. Science, 313, 1261–1266.PubMedGoogle Scholar
  154. Tyler, B. M., Kale, S. D., Wang, Q., Tao, K., Clark, H. R., Drews, K., et al. (2013). Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Molecular Plant-Microbe Interactions, 26, 611–616.PubMedGoogle Scholar
  155. van Heerwaarden, J., Doebley, J., Briggs, W. H., Glaubitz, J. C., Goodman, M. M., Gonzalez, J., & Ross-Ibarra, J. (2011). Genetic signals of origin, spread, and introgression in a large sample of maize landraces. PNAS, 108, 1088–1092.PubMedGoogle Scholar
  156. van West, P. (2006). Saprolegnia parasitica, an oomycete pathogen with a fishy appetite; new challenges for an old problem. Mycologist, 20, 99–104.Google Scholar
  157. Vieira, B. S., & Barreto, R. W. (2006). First record of Bremia lactucae infecting Sonchus oleraceus and Sonchus asper in Brazil and its infectivity to lettuce. Journal of Phytopathology, 154, 84–87.Google Scholar
  158. Viljoen, A., van Wyk, P. S., & Jooste, W. J. (1999). Occurrence of the white rust pathogen, Albugo tragopogonis, in seed of sunflower. Plant Disease, 83, 77.Google Scholar
  159. Vlk, W. (1939). Über die Geisselstruktur der Saprolegniaceenschwärmer. Archiv für Protistenkunde, 92, 157–160.Google Scholar
  160. Vogel, H. J. (1960). Two modes of lysine synthesis among lower fungi: evolutionary significance. Biochimica et Biophysica Acta, 41, 172–173.Google Scholar
  161. Voglmayr, H. (2003). Phylogenetic study of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycological Research, 107, 1132–1142.PubMedGoogle Scholar
  162. Voglmayr, H., & Riethmüller, A. (2006). Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycological Research, 110, 75–85.PubMedGoogle Scholar
  163. Voglmayr, H., Riethmüller, A., Göker, M., Weiß, M., & Oberwinkler, F. (2004). Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildews with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data. Mycological Research, 108, 1011–1024.PubMedGoogle Scholar
  164. Walker, J., & Priest, M. J. (2007). A new species of Albugo on Pterostylis (Orchidaceae) from Australia: confirmation of the genus Albugo on a monocotyledonous host. Australasian Plant Pathology, 36, 181–185.Google Scholar
  165. Waterhouse, G. M., & Brothers, M. P. (1981). The taxonomy of Pseudoperonospora. CABI Mycological Papers, 148, 1–28.Google Scholar
  166. Wawra, S., Belmonte, R., Löbach, L., Saraiva, M., van Willems, A., & West, P. (2012). Secretion, delivery and function of oomycete effector proteins. Current Opinion in Microbiology, 15, 685–691.PubMedGoogle Scholar
  167. Wawra, S., Djamei, A., Albert, I., Nürnberger, T., van Kahmann, R., & West, P. (2013). In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Molecular Plant-Microbe Interactions, 26, 528–536.PubMedGoogle Scholar
  168. Weste, G., & Marks, G. C. (1987). The biology of Phytophthora cinnamomi in Australasian forests. Annual Review of Phytopathology, 25, 207–229.Google Scholar
  169. Wilson, G. W. (1907). Studies in North American Peronosporales I, the genus Albugo. Bulletin of the Torrey Botanical Club, 34, 61–84.Google Scholar
  170. Wyenandt, C. A., Simon, J. E., McGrath, M. T., & Ward, D. L. (2010). Susceptibility of basil cultivars and breeding lines to downy mildew (Peronospora belbahrii). HortScience, 45, 1416–1419.Google Scholar
  171. Yaeno, T., Li, H., Chaparro-Garcia, A., Schornack, S., Koshiba, S., Watanabe, S., et al. (2011). Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. PNAS, 108, 14682–14687.PubMedGoogle Scholar
  172. Yao, C. L., Frederiksen, R. A., & Magill, C. W. (1990). Seed transmission of sorghum downy mildew: detection by DNA hybridisation. Seed Science and Technology, 18, 201–207.Google Scholar
  173. Yerkes, W. D., & Shaw, C. G. (1959). Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology, 49, 499–507.Google Scholar
  174. Yoshida, K., Schuenemann, V. J., Cano, L. M., Pais, M., Mishra, B., Sharma, R., et al. (2013). The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife, 2, e00731.PubMedCentralPubMedGoogle Scholar

Copyright information

© KNPV 2014

Authors and Affiliations

  1. 1.Integrative Fungal Research Cluster (IPF)Frankfurt am MainGermany
  2. 2.Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany
  3. 3.Senckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
  4. 4.Department of Biosciences, Institute of Ecology, Evolution and DiversityGoethe University Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations