European Journal of Plant Pathology

, Volume 138, Issue 2, pp 307–321 | Cite as

Proteomic analysis of Colletotrichum kahawae-resistant and susceptible coffee fruit pericarps

  • Claudia Patricia Bolívar Forero
  • Maria del Pilar MoncadaEmail author


Coffee berry disease (CBD) is caused by the fungus Colletotrichum kahawae and is restricted to the African continent, where it generates losses of up to 80 % of coffee production. Weather conditions in certain growing areas at high altitudes in Colombia appear to be very favourable for the development of this disease. Certain genotypes of Coffee arabica are resistant to this pathogen, such as the Timor Hybrid and some Ethiopian accessions. It is important to identify the proteins in these coffee genotypes that are associated with resistance to this fungus. Therefore, we compared the proteomes of two genotypes that are resistant to different isolates of C. kahawae with the proteome of the susceptible coffee genotype Caturra. We optimized the methodology applied for the extraction, cleaning and purification of proteins from the green fruit pericarp at 150 to 170 days after flowering. Through two-dimensional differential gel electrophoresis, proteomic map images were obtained for the resistant and susceptible genotypes. Fifty-two protein spots that were significantly different between the resistant and susceptible genotypes were detected. These protein spots were isolated and sequenced via mass spectrometry. The sequence analysis identified 14 proteins in the Timor Hybrid and 14 in CCC1147 that were associated with resistance and pathogen defence.


Colletotrichum kahawae CBD Proteome Differential gel electrophoresis Mass spectrometry Coffee berry disease 



This research was part of the project “Application of genomic developments for the sustainability of the Colombian coffee crop” under agreement No. 2011–102 between the Ministry of Agriculture and Rural Development of Colombia and the National Federation of Coffee Growers of Colombia (FNC No. 217 of 2011). The authors thank Dr. Ricardo Acuña for collaboration in the development of this research.


  1. Abril, N., Gion, J. M., Kerner, R., Muller-Starck, G., Navarro, M. R., Plomion, C., et al. (2011). Review: proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 72, 1219–1242.PubMedCrossRefGoogle Scholar
  2. Aouni, A., Matsukura, C., Ezura, H., & Asamizu, E. (2012). Characterization of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles. Gene, 493(1), 36–43.CrossRefGoogle Scholar
  3. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  4. Damerval, C., de Vienne, D., Zivy, M., & Thiellement, H. (1986). Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling protein. Electrophoresis, 7, 52–54.CrossRefGoogle Scholar
  5. Daub, M. E., & Ehrenshaft, M. (2000). The photoactivated cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annual Review of Phytopathology, 38, 461–490.PubMedCrossRefGoogle Scholar
  6. Dunwell, J. M. (1998). Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnology and Genetic Engineering Reviews, 15, 1–32.PubMedCrossRefGoogle Scholar
  7. Ernst, K., Kumar, A., Kriseleit, D., Kloos, D. U., Phillips, M. S., & Ganal, M. W. (2002). The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. The Plant Journal, 31(2), 127–136.PubMedCrossRefGoogle Scholar
  8. Franco, O. V., Pelegrini, P. B., Gomes, C. P., Souza, A., Costa, F. T., Domoni, G., et al. (2009). Proteomic evaluation of coffee zygotic embryos in two different stages of seed development. Plant Physiology and Biochemistry, 47, 1046–1050.PubMedCrossRefGoogle Scholar
  9. Gabriëls, S. H. E. J., Takken, F. L. W., Vossen, J. H., de Jong, C. F., Liu, Q., Turk, S. C. H. J., et al. (2006). cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions, 19(6), 567–576.PubMedCrossRefGoogle Scholar
  10. Gil-Agusti, M. T., Campostrini, N., Zolla, L., Ciambella, C., Invernizzi, C., & Righetti, P. G. (2005). Two-dimensional mapping as a tool for classification of green coffee bean species. Proteomics, 5, 710–718.PubMedCrossRefGoogle Scholar
  11. Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H., & Nordhoff, E. (2001). α-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI/MS peptide analysis in proteomic. Analytical Chemistry, 73, 434–438.PubMedCrossRefGoogle Scholar
  12. Jorrin, J. V., Maldonado, A. M., & Castillejo, M. A. (2007). Plant proteome analysis: a 2006 update. Proteomics, 7, 2947–2962.PubMedCrossRefGoogle Scholar
  13. Kariola, T., Nrader, G., Li, J., & Palva, E. T. (2005). Clorophyllase 1, a damage control enzyme, affects the balance between defense pathway in plants. Plant Cell, 17, 282–294.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., van Rooijen, G., Waterer, D. R., et al. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences, 98(11), 6511–6515.CrossRefGoogle Scholar
  15. Koshino, L. L., Gomes, C. P., Silva, L. P., Mirian, T., Eira, S., Bloch, C., Jr., et al. (2008). Comparative proteomical analysis of zygotic embryo and endosperm from Coffea arabica Seeds. Journal of Agricultural and Food Chemistry, 56(22), 10922–10926.PubMedCrossRefGoogle Scholar
  16. Kumar, S., Ma, B., Tsai, C. J., Wolfson, H., & Nussinov, R. (1999). Folding funnels and conformation transitions via hinge-bending motions. Cell Biochemistry and Biophysics, 31, 141–164.PubMedCrossRefGoogle Scholar
  17. Kurusu, T., Hamada, J., Hamada, H., Hanamata, S., & Kuchitsu, K. (2010). Roles of calcineurin B-like protein-interacting protein kinases in innate immunity in rice. Plant Signaling & Behavior, 5(8), 1045–1047.CrossRefGoogle Scholar
  18. Kvitko, B. H., Park, D. H., Velásquez, A. C., Wei, C. H., Russell, A. B., Martin, G. B., et al. (2009). Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PloS Pathogens, 5(4), 1–16.CrossRefGoogle Scholar
  19. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.PubMedCrossRefGoogle Scholar
  20. Mariño, L., Hsu, B., Bauxevanis, A. D., & Landsman, D. (2006). The histones database: a comprehensive resource for histones and histone fold-containing proteins. Proteins: Function and Bioinformatics, 62, 838–842.CrossRefGoogle Scholar
  21. Melech-Bonfis, S., & Sessa, G. (2010). Tomato MAPKKKe is a positive regulator of cell-death signaling networks associated with plant immunity. The Plant Journal, 64(3), 379–391.CrossRefGoogle Scholar
  22. Montavon, P., Mauron, A. F., & Duruz, E. (2003). Changes in green coffee protein profiles during roasting. Journal of Agricultural and Food Chemistry, 51, 2335–2343.PubMedCrossRefGoogle Scholar
  23. Morant, M., Bak, S., Møller, B. L., & Werck-Reichhart, D. (2003). Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Current Opinion in Biotechnology, 14, 151–162.PubMedCrossRefGoogle Scholar
  24. Mouen, J. A., Bieysse, D., Njiayouom, I., Deumeni, J. P., Cilas, C., & Notteguem, J. P. (2007). Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. European Journal of Plant Pathology, 119, 391–400.CrossRefGoogle Scholar
  25. Padmanabhan, V., Dias, D. M., & Newton, R. J. (1997). Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Molecular Biology, 35, 801–807.PubMedCrossRefGoogle Scholar
  26. Parniske, M., & Jones, J. D. (1999). Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proceedings of the National Academy of Sciences, 96, 5850–5855.CrossRefGoogle Scholar
  27. Powers, R. A., Rife, C. L., Schilmiller, A. L., Howe, G. A., & Garavito, R. M. (2006). Structure determination and analysis of acyl-CoA oxidase (ACX1) from tomato. Acta Crystallographica Section D: Biological Crystallographic, 62(6), 683–686.CrossRefGoogle Scholar
  28. Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., & Williamson, V. M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences, 95(17), 9750–9754.CrossRefGoogle Scholar
  29. Salgado-Guimaraes, B. K. (2007). Proteômica diferencial em clones de Coffea canephora sob condições de déficit hídrico. Minas Gerais: Universidad Federal de Vinosa. Programa de Posgraduación en Fisiología Vegetal. 59 páginas. Trabajo de grado: Magíster Scientae em Fisiología Vegetal.Google Scholar
  30. Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T., Scofield, S. R., Kim, H. S., Lavelle, D. T., et al. (1996). Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes an lies embedded within the Pto kinase gene cluster. Cell, 86(1), 123–133.PubMedCrossRefGoogle Scholar
  31. Silva, M. C., Várzea, V., Guerra-Guimarães, L., Gil Azinheira, H., Fernandez, D., Petitot, A. S., et al. (2006). Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology, 18(1), 119–147.CrossRefGoogle Scholar
  32. Takabatake, R., Karita, E., Seo, S., Mitsuhara, I., Kuchitsu, K., & Ohashi, Y. (2007). Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant and Cell Physiology, 48, 414–423.PubMedCrossRefGoogle Scholar
  33. Thiellement, H., Zivy, M., & Plomion, C. (2002). Review: combining proteomic and genetic studies in plant. Journal of Chromatography B, 782, 137–149.CrossRefGoogle Scholar
  34. van der Vossen, H. A. M., & Walyaro, D. J. (2009). Additional evidence for oligogenic inheritance of durable host resistance to coffee berry disease (Colletotrichum kahawae) in arabica coffee (Coffea arabica L.). Euphytica, 165, 105–111.CrossRefGoogle Scholar
  35. Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., et al. (1995). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13, 19–50.CrossRefGoogle Scholar
  36. Yang, T., Bar-Peled, L., Gebhart, L., Lee, S. G., & Bar-Peled, M. (2009). Identification of galacturonic acid-1-phosphate kinase, a new member of the GHMP kinase superfamily in plants, and comparison with galactose-1-phosphate kinase. Journal of Biological Chemistry, 284(32), 21526–21535.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Claudia Patricia Bolívar Forero
    • 1
  • Maria del Pilar Moncada
    • 1
    Email author
  1. 1.Plant Breeding DepartmentNational Coffee Research Center - CenicaféCaldasColombia

Personalised recommendations