European Journal of Plant Pathology

, Volume 138, Issue 3, pp 513–527 | Cite as

Effects of plant pathogens on population dynamics and community composition in grassland ecosystems: two case studies

  • M. J. Jeger
  • N. K. G. Salama
  • M. W. Shaw
  • F. van den Berg
  • F. van den Bosch


Grassland ecosystems comprise a major portion of the earth’s terrestrial surface, ranging from high-input cultivated monocultures or simple species-mixtures to relatively unmanaged but dynamic systems. Plant pathogens are a component of these systems with their impact dependent on many interacting factors, including grassland species population dynamics and community composition, the topics covered in this paper. Plant pathogens are affected by these interactions and also act reciprocally by modifying their nature. We briefly review these features of disease in grasslands and then introduce the 150-year long-term Park Grass Experiment (PGE) at Rothamsted Research in the UK. We then consider in detail two plant-pathogen systems present in the PGE, Tragopogon pratensis-Puccinia hysterium and Holcus lanata-Puccinia coronata. These two systems have very different life history characteristics: the first, a biennial member of the Asteraceae infected by its host-specific, systemic rust; the second, a perennial grass infected by a host-non-specific rust. We illustrate how observational, experimental and modelling studies can contribute to a better understanding of population dynamics, competitive interactions and evolutionary outcomes. With Tragopogon pratensis-Puccinia hysterium, characterised as an “outbreak” species in the PGE, we show that pathogen-induced mortality is unlikely to be involved in host population regulation; and that the presence of even a short-lived seed-bank can affect the qualitative outcomes of the host-pathogen dynamics. With Holcus lanata-Puccinia coronata, we show how nutrient conditions can affect adaptation in terms of host defence mechanisms, and that co-existence of competing species affected by a common generalist pathogen is unlikely.


Grassland species dynamics Pathogen dynamics Pathogen-induced mortality Seed bank Nutrient supply Competitive interactions Evolution of host defence 


  1. Alderman, S. C. (2013). Survival, germination, and growth of Epichloë typhina and significance of leaf wounds and insects in infection of orchardgrass. Plant Disease, 97, 323–328.CrossRefGoogle Scholar
  2. Alexander, H. M. (2010). Disease in natural plant populations, communities, and ecosystems: insights into ecological and evolutionary processes. Plant Disease, 94, 492–503.CrossRefGoogle Scholar
  3. Alexander, H. M., & Holt, R. D. (1998). The interaction between plant competition and disease. Perspectives in Plant Ecology, Evolution and Systematics, 1, 206–220.CrossRefGoogle Scholar
  4. Allan, E., van Ruijven, J., & Crawley, M. J. (2010). Foliar fungal pathogens and grassland biodiversity. Ecology, 91, 2572–2582.PubMedCrossRefGoogle Scholar
  5. Barnes, C. W., Kinkel, L. L., & Groth, J. V. (2005). Spatial and temporal dynamics of Puccinia andropogonis on Comandra umbellata and Andropogon gerardii in a native prairie. Canadian Journal of Botany, 83, 1159–2581.CrossRefGoogle Scholar
  6. Borer, E. T., Hosseini, P. R., Seabloom, E. W., & Dobson, A. P. (2007). Pathogen-induced reversal of native dominance in a grassland community. Proceedings of the National Academy of Sciences USA, 104, 5473–5478.CrossRefGoogle Scholar
  7. Borer, E. T., Seabloom, E. W., Mitchell, C. E., & Power, A. G. (2010). Local context drives infection of grasses by vector-borne generalist viruses. Ecology Letters, 13, 810–818.PubMedCrossRefGoogle Scholar
  8. Borer, E. T., Adams, V. T., Engler, G. A., Adams, A. L., Schumann, C. B., & Seabloom, E. W. (2009). Aphid fecundity and grassland invasion: invader life history is the key. Ecological Applications, 19, 1187–1196.PubMedCrossRefGoogle Scholar
  9. Burdon, J. J., Thrall, P. H., & Ericson, L. (2013). Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions. Current Opinion in Plant Biology, 16, 400–405.Google Scholar
  10. Carey, P. D., Fitter, A. H., & Watkinson, A. R. (1992). A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia, 90, 550–555.Google Scholar
  11. Caswell, H. (1989). Matrix population models: construction, analysis, and interpretation. Sunderland: Sinauer Associates.Google Scholar
  12. Chakraborty, S. (2001). Grassland plant diseases: management and control. In Proceedings of the XIX International Grassland Congress: Grassland ecosystems: an outlook into the 21st century (Eds Gomide JA, Mattos WRS, DaSilva SC) San Pedro, Brazil, Feb 11–21 2001, pp 223–230.Google Scholar
  13. Clarke, D. L., & Wilson, M. V. (2003). Post-dispersal seed fates of four prairie species. American Journal of Botany, 90, 730–735.CrossRefGoogle Scholar
  14. Clay, K., & Brown, V. K. (1997). Infection of Holcus lanatus and H. mollis by Epichloe in experimental grasslands. Oikos, 79, 363–370.CrossRefGoogle Scholar
  15. Clements, D. R., Upadhyaya, M. K., & Bos, S. J. (1999). The biology of Canadian weeds. 110. Tragopogon dubius Scop., Tragopogon pratensis L., and Tragopogon porrifolius L. Canadian Journal of Plant Science, 79, 153–163.CrossRefGoogle Scholar
  16. Das, M., Griffey, C. A., Baldwin, R. E., Waldenmaler, C. M., Vaghn, M. E., Price, A. M., et al. (2007). Host resistance and fungicide control of leaf rust (Puccinia hordei) in barley (Hordeum vulgare) and effects on grain yield and yield components. Crop Protection, 26, 1422–1430.CrossRefGoogle Scholar
  17. Dawkins GHM, (1988). Plant pathogens and ecological succession. PhD thesis: University of London, Imperial College.Google Scholar
  18. de Jong, M. D., Bourdot, G. W., & Powell, J. (2002). A model of the escape of Sclerotinia sclerotiorum ascospores from pasture. Ecological Modelling, 150, 83–105.CrossRefGoogle Scholar
  19. Delmiglio, C., Pearson, M. N., Lister, R. A., & Guy, P. L. (2010). Incidence of cereal and pasture viruses in New Zealand’s native grasses. Annals of Applied Biology, 157, 25–36.CrossRefGoogle Scholar
  20. Dickson, T. L., & Mitchell, C. E. (2010). Herbivore and fungal pathogen exclusion affects the seed production of four common grassland species. PLoS One, 5, e12022.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dinoor, A., & Eshed, N. (1984). The role and importance of pathogens in natural plant communities. Annual Review of Phytopathology, 22, 443–466.CrossRefGoogle Scholar
  22. Dodd, M., Silvertown, J., McConway, K., Potts, J., & Crawley, M. (1995). Community stability—a 60-year record of trends and outbreaks in the occurrence of species in the Park Grass Experiment. Journal of Ecology, 83, 277–285.CrossRefGoogle Scholar
  23. Erneberg, M., Strandberg, B., Strandberg, M., Jensen, B. D., & Weiner, J. (2008). Effects of soil disturbance and disease on the growth and reproduction of Lolium perenne (Poaceae) introduced to semi-natural grasslands. Polish Journal of Ecology, 56, 593–604.Google Scholar
  24. Evans, M. E. K., & Dennehy, J. J. (2005). Germ banking: bet-hedging and variable release from egg and seed dormancy. Quarterly Review of Biology, 80, 431–451.PubMedCrossRefGoogle Scholar
  25. Finch, D. D., & Alexander, H. M. (2011). Variation in plant distributions, plant traits and disease levels across a woodland/grassland ecotone. American Midland Naturalist, 166, 309–324.CrossRefGoogle Scholar
  26. Firbank, L. G., Smart, S. M., Crabb, J., Critchley, C. N. R., Fowbert, J. W., Fuller, R. J., et al. (2003). Agronomic and ecological costs and benefits of set-aside in England. Agriculture, Ecosystems & Environment, 95, 73–85.CrossRefGoogle Scholar
  27. Fischer, M., Weyand, A., Rudmann-Maurer, K., & Stocklin, J. (2012). Omnipresence of leaf herbivory and leaf infection by fungal pathogens in agriculturally used grasslands of the Swiss Alps, but low plant damage. Alpine Botany, 122, 95–107.CrossRefGoogle Scholar
  28. Fitzsimons, M. S., & Miller, M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97, 1937–1943.PubMedCrossRefGoogle Scholar
  29. Frantzen, J. (1994). The role of clonal growth in the pathosystem Cirsium arvensePuccinia punctiformis. Canadian Journal of Botany, 72, 832–836.CrossRefGoogle Scholar
  30. Goodall, J., Witkowski, E. T. F., McConnachie, A. J., & Keen, C. (2012). Altered growth, population structure, and realised niche of the weed Campuloclinium macrosephalum (Asteraceae) after exposure to the naturalised rust Puccinia eupatorii (Pucciniaceae). Biological Invasions, 14, 1947–1962.CrossRefGoogle Scholar
  31. Groppe, K., Steinger, T., Schmid, B., Baur, B., & Boller, T. (2001). Effects of habitat fragmentation on choke disease (Epichloe bromicola) in the grass Bromus erectus. Journal of Ecology, 89, 247–255.CrossRefGoogle Scholar
  32. Han, X. M., Dendy, S. P., Garrett, K. A., Fang, L., & Smith, M. D. (2008). Comparison of damage to native and exotic tallgrass prairie plants by natural enemies. Plant Ecology, 198, 197–210.CrossRefGoogle Scholar
  33. Haubensak, K., & Smyth, A. (2002). Tragopogon porrifolius. Berkley: University of California.Google Scholar
  34. Hille Ris Lambers, J., Harpole, W. S., Tilman, D., Knops, J., & Reich, P. B. (2004). Mechanisms responsible for the positive diversity-productivity relationship in Minnesota grasslands. Ecology Letters, 7, 661–668.CrossRefGoogle Scholar
  35. Hoffman, G. D., & Rao, S. (2013). Association of slugs with the fungal pathogen Epichloë typhina (Ascomyctina: Clavicipitaceae): potential role in stroma fertilisation and disease spread. Annals of Applied Biology, 162, 324–334.CrossRefGoogle Scholar
  36. Jenkins, S. N., Waite, I. S., Blackburn, A., Husband, R., Rushton, S. P., Manning, D. C., et al. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 95, 319–334.CrossRefGoogle Scholar
  37. Jorritsma-Wienk, L. D., Ameloot, E., Lenssen, J. P. M., & de Kroon, H. (2007). Differential responses of germination and seedling establishment in populations of Tragopogon pratensis (Asteraceae). Plant Biology, 9, 109–115.PubMedCrossRefGoogle Scholar
  38. Kaj, I., Krone, S. M., & Lascoux, M. L. (2001). Coalescent theory for seed bank models. Journal of Applied Probability, 38, 285–300.Google Scholar
  39. Koubek, T., & Herben, T. (2008). Effect of systemic diseases on clonal integration: modelling approach. Evolutionary Ecology, 22, 449–460.CrossRefGoogle Scholar
  40. Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., et al. (1999). Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 2, 286–293.CrossRefGoogle Scholar
  41. Kranz, J. (1990). Fungal disease in multispecies plant communities. New Phytologist, 116, 383–405.CrossRefGoogle Scholar
  42. Kremer, R. J., Caesar, A. J., & Souissi, T. (2006). Soilborne microorganisms of Euphorbia are potential biological control agent s of the invasive weed leafy spurge. Applied Soil Ecology, 32, 27–37.CrossRefGoogle Scholar
  43. Lau, J. A., Strengbom, J., Stone, L. R., Reich, P. B., & Tiffin. (2008). Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions. Ecology, 89, 226–236.PubMedCrossRefGoogle Scholar
  44. Linders, E. G. A., van Damme, J. M. M., & Zadoks, J. C. (1996). Epidemics of Diaporthe adunca in experimental and in natural populations of Plantago lanceolata and the effect of partial resistance on disease development. Plant Pathology, 45, 70–83.CrossRefGoogle Scholar
  45. Malmstrom, C. M., McCullough, A. J., Johnson, H. A., Newton, L. A., & Borer, E. T. (2005). Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia, 145, 153–164.PubMedCrossRefGoogle Scholar
  46. Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A., & Cook, M. A. (2007). Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. Journal of Ecology, 95, 1153–1166.CrossRefGoogle Scholar
  47. Mattner, S. W., & Parbery, D. G. (2007). Crown rust affects plant performance and interference ability of Italian ryegrass in the post-epidemic generation. Grass and Forage Science, 62, 437–444.CrossRefGoogle Scholar
  48. Mitchell, C. E. (2003). Trophic control of grassland production and biomass by pathogens. Ecology Letters, 6, 147–155.CrossRefGoogle Scholar
  49. Mitchell, C. E., Tilman, D., & Groth, J. V. (2002). Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83, 1713–1726.CrossRefGoogle Scholar
  50. Mitchell, C. E., Reich, P. B., Tilman, D., & Groth, J. V. (2003). Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 9, 438–451.CrossRefGoogle Scholar
  51. Moore, S. M., Manore, C. A., Bokil, V. A., Borer, E. T., & Hosseini, P. R. (2011). Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition. Bulletin of Mathematical Biology, 73, 2707–2730.PubMedCrossRefGoogle Scholar
  52. Nelson, C. J., & Burns, J. C. (2006). Fifty years of grassland science leading to change. Crop Science, 46, 2204–2217.CrossRefGoogle Scholar
  53. Nunney, L. (2002). The effective size of annual plant populations: the interactions of a seed bank with fluctuation size in maintaining genetic variation. American Naturalist, 60, 195–204.CrossRefGoogle Scholar
  54. Paul, N. D., & Ayres, P. G. (1987). Survival, growth and reproduction of groundsel (Senecio vulgaris) infected by rust (Puccinia lagenophorae) in the field during summer. Journal of Ecology, 75, 61–71.CrossRefGoogle Scholar
  55. Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., et al. (2010). Plant health and global change—some implications for landscape management. Biological Reviews, 85, 729–755.PubMedGoogle Scholar
  56. Pekrun, C., Lane, P. W., & Lutman, P. J. W. (2005). Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus). Agricultural Systems, 84, 1–20.CrossRefGoogle Scholar
  57. Petermann, J. S., Fergus, A. J. F., Turnbull, L. A., & Schmid, B. (2008). Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 89, 2399–2406.PubMedCrossRefGoogle Scholar
  58. Peters, J. C., & Shaw, M. W. (1996). Effect of artificial exclusion and augmentation of fungal plant pathogens on a regenerating grassland. New Phytologist, 134, 295–307.CrossRefGoogle Scholar
  59. Pfender, W. F. (2001). Host range differences between populations of Puccinia graminis subsp. graminicola obtained from perennial ryegrass and tall fescue. Plant Disease, 85, 993–998.CrossRefGoogle Scholar
  60. Pfender, W. F., & Alderman, S. C. (2006). Regional development of orchardgrass choke and estimation of seed yield loss. Plant Disease, 90, 240–244.CrossRefGoogle Scholar
  61. Power, A. G., Borer, E. T., Hosseini, P., Mitchell, C. E., & Seebloom, E. W. (2011). The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 159, 95–100.PubMedCrossRefGoogle Scholar
  62. Qi, M. Q., Upadhyaya, M. K., & Turkington, R. (1996). Reproductive behaviour of natural populations of meadow salsify (Tragopogon pratensis). Weed Science, 44, 68–73.Google Scholar
  63. Retallack, G. J. (2013). Global cooling by grassland soils of the geological past and near future. Annual Review of Earth and Planetary Sciences, 41, 69–86.CrossRefGoogle Scholar
  64. Roberts, H. A. (1986). Seed persistence in soil and seasonal emergence in plant species from different habitats. Journal of Applied Ecology, 23, 639–656.CrossRefGoogle Scholar
  65. Roscher, C., Schumacher, J., Foitzik, O., & Schultze, E. D. (2007). Resistance to rust fungi in Lolium perenne depends on within-species variation and performance of the host species in grasslands of different plant density. Oecologia, 153, 173–183.PubMedCrossRefGoogle Scholar
  66. Rousk, J., Brookes, P.C., & Bååth E. (2011). Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiology Ecology, 76, 89–99.Google Scholar
  67. Rudgers, J. A., & Orr, S. (2009). Non-native grass alters growth of native tree species via leaf and soil microbes. Journal of Ecology, 97, 247–255.CrossRefGoogle Scholar
  68. Ruuhola, T., & Julkunen-Tiitto, R. (2003). Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra. Journal of Chemical Ecology, 29, 1565–1588.Google Scholar
  69. Salama, N. K. G., Edwards, G. R., Heard, M. S., & Jeger, M. J. (2011). The suppression of reproduction of Tragopogon pratensis infected by the rust fungus Puccinia hysterium. Fungal Ecology, 3, 406–408.CrossRefGoogle Scholar
  70. Salama, N.K.G. (2009). Regulation of a biennial host plant population by an autoecious, demicyclic rust fungus: Puccinia hysterium on Tragopogon pratensis in the Park Grass Experiment. Unpublished. PhD thesis. Imperial College, University of London.Google Scholar
  71. Salama, N. K. G., van den Bosch, F., Edwards, G. R., Heard, M. S., & Jeger, M. J. (2012). Population dynamics of a non-cultivated biennial plant Tragopogon pratensis infected by the autecious demicyclic rust fungus Puccinia hysterium. Fungal Ecology, 5, 530–542.CrossRefGoogle Scholar
  72. Salama, N. K. G., & Jeger, M. J. (2014). Pathogen induced mortality and its role in natural plant-rust systems. In K. Stevenson & M. J. Jeger (Eds.), Exercises in plant disease epidemiology (2nd ed.). Minneapolis: APS Press.Google Scholar
  73. Schoolmaster, D. R. (2008). Recruitment limitation modifies the net effects of shared enemies on competitively inferior plants. Journal of Ecology, 96, 114–121.Google Scholar
  74. Shiba, T., & Sugawara, K. (2005). Resistance to the rice leaf bug, Trigonotylus caelestialium, is conferred by Neotyphodium endophyte infection of perennial ryegrass, Lolium perenne. Entomologia Experimentalis et Applicata, 115, 387–392.CrossRefGoogle Scholar
  75. Schnitzer, S. A., Klironomos, J. N., HilleRisLambers, J., Kinkel, L. L., Reich, P. B., Xiao, K., et al. (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296–303.PubMedCrossRefGoogle Scholar
  76. Seabloom, E. W., Borer, E. T., Jolles, A., & Mitchell, C. E. (2009). Direct and indirect effects of viral pathogens and the environment on invasive grass fecundity in Pacific Coast grasslands. Journal of Ecology, 97, 1264–1273.CrossRefGoogle Scholar
  77. Seabloom, E. W., Borer, E. T., Mitchell, C. E., & Power, A. G. (2010). Viral diversity and prevalence gradients in North American Pacific coast grasslands. Ecology, 91, 721–732.PubMedCrossRefGoogle Scholar
  78. Seabloom, E. W., Borer, E. T., Lacroix, C., Mitchell, C. E., & Power, A. G. (2013). Richness and composition of niche assembled viral pathogen communities. PLoS One, 8, e55675.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Silvertown, J., Poulton, P., Johnston, E., Edwards, G., Heard, M., & Biss, P. M. (2006). The Park Grass Experiment 1856–2006: its contribution to ecology. Journal of Ecology, 94, 801–814.CrossRefGoogle Scholar
  80. Sjoberg, J., Martensson, A., & Persson, P. (2007). Are field populations of arbuscular mycorrhizal fungi able to suppress the transmission of seed-borne Bipolaris sorokiniana to aerial plant parts. European Journal of Plant Pathology, 117, 45–55.CrossRefGoogle Scholar
  81. Strengbom, J., Nordin, A., Nasholm, T., & Ericson, L. (2002). Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. Journal of Ecology, 90, 61–67.CrossRefGoogle Scholar
  82. Taye, T., Einhorn, G., & Metz, R. (2004). Parthenium hysterophorus, an invasive species in Ethiopia—investigations on the occurrence and on its pathogens. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 19, 271–278.Google Scholar
  83. van den Berg, F., & van den Bosch, F. (2004). A model for the evolution of pathogen-induced leaf shedding. Oikos, 107, 36–49.CrossRefGoogle Scholar
  84. van den Berg, F., Robert, C., Shaw, M. W., & van den Bosch, F. (2007). Apical leaf necrosis and leaf nitrogen dynamics in diseased leaves: a model study. Plant Pathology, 56, 424–436.CrossRefGoogle Scholar
  85. van den Berg, F., van den Bosch, F., Powers, S. J., & Shaw, M. W. (2008). Apical leaf necrosis as a defence mechanism against pathogen attack: effects of high nutrient availability on onset and rate of necrosis. Plant Pathology, 57, 1009–1016.CrossRefGoogle Scholar
  86. van den Berg, F., & van den Bosch, F. (2009). The presence of generalist plant pathogens might not explain the long-term coexistence of plant species. Journal of Theoretical Biology, 257, 446–453.PubMedCrossRefGoogle Scholar
  87. van Elsas, J. D., Garbeva, P., & Salles, J. (2002). Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13, 29–40.PubMedCrossRefGoogle Scholar
  88. Vignale, M. V., et al. (2013). Epichloid endophytes confer resistance to the smut Ustilago bullata in the wild grass Bromus auleticus (Trin.). Biological control. doi:10.1016/j.biocontrol.2013.06.002.Google Scholar
  89. Vozenilkova, B., Markova, J., Klimes, F., Kvet, J., & Maskova, Z. (2008). The influence of mountain meadow management on the occurrence of Puccinia perplexans Plow. Journal of Plant Diseases and Protection, 115, 167–171.Google Scholar
  90. Vosenilkova, B., Kobes, M., Klimes, F., Cermak, B., & Ptacnikova, V. (2007). The aim of small-site experiments carried out in the area of the foothills of the Sumava Mts. was to determine the etiological agent of the disease of meadow peavine (Lathyrus pratensis L.). Gesunde Pflanzen, 59, 179–182.CrossRefGoogle Scholar
  91. Waples, R. S. (2006). Seed banks, Salmon and sleeping genes: effective population size in semelparous, age structures species with fluctuating abundance. American Naturalist, 167, 118–135.PubMedCrossRefGoogle Scholar
  92. Way, H. M., Kazan, K., Mitter, N., Goulter, K. C., Birch, R. G., & Manners, J. M. (2002). Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiological and Molecular Plant Pathology, 60, 275–282.Google Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • M. J. Jeger
    • 1
  • N. K. G. Salama
    • 1
  • M. W. Shaw
    • 2
  • F. van den Berg
    • 3
  • F. van den Bosch
    • 3
  1. 1.Division of Ecology and Evolution and Centre for Environmental PolicyImperial College LondonAscotUK
  2. 2.School of Biological SciencesUniversity of ReadingReadingUK
  3. 3.Biomathematics and BioinformaticsRothamsted ResearchHarpendenUK

Personalised recommendations