European Journal of Plant Pathology

, Volume 138, Issue 1, pp 67–78 | Cite as

Identification of fusarium head blight resistance related metabolites specific to doubled-haploid lines in barley

  • Sivakumar K. Chamarthi
  • Kundan Kumar
  • Raghavendra Gunnaiah
  • Ajjamada C. Kushalappa
  • Yves Dion
  • Thin M. Choo
Original Research

Abstract

Fusarium head blight (FHB) and deoxynivalenol (DON) mycotoxin produced by Fusarium graminearum reduce barley yield and quality worldwide. Hundreds of quantitative trait loci (QTLs) have been identified in wheat and barley but their functions are largely unknown. Metabolic profiling was applied to better understand the mechanisms of resistance and to identify potential FHB resistance biomarker metabolites in barley. Four FHB resistant (H15-2, H148-3, H203-2 and H379-2) and one susceptible (H97-2), two-row, purple, doubled-haploid (DH) lines of barley were inoculated with either the pathogen or mock-solution. The disease severity quantified as the area under the disease progress curve (AUDPC) significantly varied between the resistant and susceptible genotypes, but not among the resistant genotypes. Neither the amount of DON nor the detoxified product, proportion of total DON, was significant among lines. The resistance related (RR, higher in abundance in resistant than in susceptible) metabolites varied in numbers and fold changes among the DH resistant lines. A total of 144 RR constitutive (RRC) and 167 RR induced (RRI) metabolites were selected, of which 39 and 37, respectively, were putatively identified. These RR metabolites mainly belonged to six chemical groups: phenylpropanoids, hydroxycinnamic acid amides, flavonoids, fatty acids, terpenoids, and alkaloids. The specific RR metabolites identified in each DH line, the possible mechanisms of resistance in each and their use as potential biomarkers are discussed.

Keywords

Barley Fusarium graminearum Metabolomics Biomarkers Quantitative resistance Doubled-haploid lines 

Supplementary material

10658_2013_302_MOESM1_ESM.xlsx (21 kb)
ESM 1(XLSX 21 kb)

References

  1. Bai, G. H., & Shaner, G. E. (1994). Wheat scab: perspective and control. Plant Disease, 78, 760–766.CrossRefGoogle Scholar
  2. Bai, G. H., Plattner, R., Desjardins, A., & Kolb, F. L. (2001). Resistance to fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breeding, 120, 1–6.CrossRefGoogle Scholar
  3. Boddu, J., Cho, S., Kruger, W. M., & Muehlbauer, G. J. (2006). Transcriptome analysis of the barley- Fusarium graminearum interaction. Molecular Plant-Microbe Interactions, 19, 407–417.PubMedCrossRefGoogle Scholar
  4. Boddu, J., Cho, S., & Muehlbauer, G. J. (2007). Transcriptome analysis of trichothecene-induced gene expression in barley. Molecular Plant-Microbe Interactions, 20, 1364–1375.PubMedCrossRefGoogle Scholar
  5. Bollina, V., Kumaraswamy, G. K., Kushalappa, A. C., Choo, T. M., Dion, Y., Rioux, S., Faubert, D., & Hamzehzarghani, H. (2010). Mass spectrometry based metabolomics application to identify quantitative resistance related metabolites in barley against fusarium head blight. Molecular Plant Pathology, 11, 769–782.PubMedGoogle Scholar
  6. Bollina, V., Kushalappa, A. C., Choo, T. M., Dion, Y., & Rioux, S. (2011). Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Molecular Biology, 77, 355–370.PubMedCrossRefGoogle Scholar
  7. Boutigny, A. L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M. N., Pinson-Gadais, L., & Richard-Forget, F. (2009). Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycological Research, 113, 746–753.PubMedCrossRefGoogle Scholar
  8. Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and marker-assisted selection for fusarium head blight resistance in wheat: a review. Plant Breeding Reviews, 128, 1–26.CrossRefGoogle Scholar
  9. Campbell, H., Choo, T. M., Vigier, B., & Underhill, L. (2000). Mycotoxins in barley and oat samples from Eastern Canada. Canadian Journal of Plant Science, 80, 977–980.CrossRefGoogle Scholar
  10. Cho, J. Y., Choi, J. G., Son, W. S., Jang, K. S., Lim, H. K., Lee, S. O., et al. (2007). Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Management Science, 63, 935–940.PubMedCrossRefGoogle Scholar
  11. Choo, T. M. (2006). Breeding barley for resistance to fusarium head blight and mycotoxin accumulation. Plant Breeding Reviews, 26, 125–169.Google Scholar
  12. Choo, T. M., Vigier, B., Shen, Q. Q., Martin, R. A., Ho, K. M., & Savard, M. (2004). Barley traits associated with resistance to fusarium head blight and deoxynivalenol accumulation. Phytopathology, 94, 1145–1150.PubMedCrossRefGoogle Scholar
  13. Dahleen, L. S., Morgan, W., Mittal, S., Bregitzer, P., Brown, R. H., & Hill, N. S. (2012). Quantitative trait loci (QTL) for Fusarium ELISA compared to QTL for fusarium head blight resistance and deoxynivalenol content in barley. Plant Breeding, 131, 237–243.CrossRefGoogle Scholar
  14. Dexter, J. E., & Nowicki, T. W. (2003). Safety assurance and quality assurance issues associate with fusarium head blight in wheat. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 420–460). St Paul, MN: American Phytopathological Society.Google Scholar
  15. Ding, L., Xu, H., Yi, H., Yang, L., Kong, Z., et al. (2011). Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS ONE, 6, e19008.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Facchini, P. J., Hagel, J., & Zulak, K. G. (2002). Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Canadian Journal of Botany, 80, 577–589.CrossRefGoogle Scholar
  17. Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1, 44–48.CrossRefGoogle Scholar
  18. Geddes, J., Eudes, F., Laroche, A., & Selinger, L. B. (2008). Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics, 8, 545–554.PubMedCrossRefGoogle Scholar
  19. Golkari, S., Gilbert, J., Prashar, S., & Procunier, J. D. (2007). Microarray analysis of Fusarium graminearum induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnology Journal, 5, 38–49.PubMedCrossRefGoogle Scholar
  20. Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S., & Somers, D. J. (2012). Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE, 7, e40695.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hamberg, M. (1999). An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids, 34, 1131–1142.PubMedCrossRefGoogle Scholar
  22. Hamzehzarghani, H., Kushalappa, A. C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., et al. (2005). Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiology and Molecular Plant Pathology, 66, 119–133.CrossRefGoogle Scholar
  23. Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A. C., Dion, Y., Rioux, S., et al. (2008a). Metabolic profiling coupled with statistical analyses for potential high throughput screening of quantitative resistance to fusarium head blight in wheat cultivars. Canadian Journal of Plant Pathology, 30, 24–36.CrossRefGoogle Scholar
  24. Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A. C., Mamer, O., & Somers, D. (2008b). Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance against fusarium head blight. Canadian Journal of Plant Science, 88, 789–797.CrossRefGoogle Scholar
  25. Humphreys, J. M., & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5, 224–229.PubMedCrossRefGoogle Scholar
  26. Kim, M. J., Hyun, J. N., Kim, J. A., Park, J. C., Kim, M. Y., Kim, J. G., Lee, S. J., Chun, S. C., & Chung, I. M. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 55, 4802–4809.PubMedCrossRefGoogle Scholar
  27. Ko, C. H., Shen, S. C., Hsu, C. S., & Chen, Y. C. (2005). Mitochondrial dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochemical Pharmacology, 69, 913–927.PubMedCrossRefGoogle Scholar
  28. Kumaraswamy, K. G., Kushalappa, A. C., Choo, T. M., Dion, Y., & Rioux, S. (2011a). Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). Journal of Chemical Ecology, 37, 846–856.PubMedCrossRefGoogle Scholar
  29. Kumaraswamy, K. G., Bollina, V., Kushalappa, A. C., Choo, T. M., Dion, Y., et al. (2011b). Metabolomics technology to phenotype resistance in barley against Gibberella zeae. European Journal of Plant Pathology, 130, 29–43.CrossRefGoogle Scholar
  30. Kumaraswamy, K. G., Kushalappa, A. C., Choo, T. M., Dion, Y., & Rioux, S. (2012). Differential metabolic response of barley genotypes, varying in resistance, to trichothecene producing and nonproducing (tri5-28) isolates of Fusarium graminearum. Plant Pathology, 61, 509–521.CrossRefGoogle Scholar
  31. Kushalappa, A. C., & Gunnaiah, R. (2013). Metabolo-proteomics to discover plant biotic stress resistance genes. Trends in Plant Science, 18, 522–531.PubMedCrossRefGoogle Scholar
  32. Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. Molecular Plant-Microbe Interactions, 18, 1318–1324.PubMedCrossRefGoogle Scholar
  33. Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate fusarium head blight resistance in wheat. Crop Science, 48, 1888–1896.CrossRefGoogle Scholar
  34. Matern, U., Luer, P., & Kreusch, D. (1999). Biosynthesis of coumarins. In D. Barton, K. Nakanishi, O. Meth-Cohn, & U. Sankawa (Eds.), Comprehensive natural products chemistry, Vol. 1, polyketides and other secondary metabolites including fatty acids and their derivatives (pp. 623–637). Oxford, UK: Elsevier Science Ltd.Google Scholar
  35. McKeehen, J. D., Busch, R. H., & Fulcher, R. G. (1999). Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to fusarium resistance. Journal of Agricultural. Food Chemistry, 47, 1476–1482.Google Scholar
  36. Mei, C. S., Qi, M., Sheng, G. Y., & Yang, Y. N. (2006). Inducible over expression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19, 1127–1137.PubMedCrossRefGoogle Scholar
  37. Miller, J. D., Young, J. C., & Arnison, P. G. (1986). Detoxification of deoxynivalenol by suspension cultures of a fusarium head blight resistant wheat cultivar. Canadian Journal of Plant Pathology, 8, 147–50.CrossRefGoogle Scholar
  38. Mizutani, A., Miki, N., Yukioka, H., Tamura, H., & Masuko, M. (1996). A possible mechanism of control of rice blast disease by a novel alkoxyiminoacetamide fungicide, SSF126. Phytopathology, 86, 295–300.CrossRefGoogle Scholar
  39. Naoumkina, M. A., Zhao, Q., Gallego-giraldo, L., Dai, X., Zhao, P. X., & Dixon, R. A. (2010). Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11, 829–846.PubMedGoogle Scholar
  40. Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.CrossRefGoogle Scholar
  41. Pańka, D., Piesik, D., Jeske, M., & Baturo-Cieśniewska, A. (2013). Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. Journal of Plant Physiology. doi:10.1016/j.jplph.2013.02.009.PubMedGoogle Scholar
  42. Paranidharan, V., Abu-Nada, Y., Hamzehzarghani, H., Kushalappa, A. C., Mamer, O., Dion, Y., et al. (2008). Resistance related metabolites in wheat against Fusarium graminearum and virulence factor, DON. Botany, 86, 1168–1179.CrossRefGoogle Scholar
  43. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Poppenberger, F., Berthiller, D., Lucyshyn, T., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). Detoxification of the fusarium mycotoxin deoxynivalenol by a UDP glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278, 47905–47914.PubMedCrossRefGoogle Scholar
  45. Prom, L. K., Steffenson, B. J., Salas, B., Jr., Fetch, T. G., & Casper, H. H. (1997). Barley accessions resistant to fusarium head blight and the accumulation of deoxynivalenol. Cereal Research Communications, 25, 807–808.Google Scholar
  46. Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.Google Scholar
  47. Schweizer, P., Buchala, A., & Metraux, J. P. (1997). Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2, 6-dichloroisonicotinic acid. Plant Physiology, 115, 61–70.PubMedCentralPubMedGoogle Scholar
  48. Shaner, G. E. (2003). Epidemiology of fusarium head blight of small grain cereals in North America. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 84–119). St Paul, MN: APS Press.Google Scholar
  49. Skadhauge, B., Thomsen, K. K., & Wettstein, D. (1997). The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas, 126, 147–160.CrossRefGoogle Scholar
  50. Steffenson, B. J. (2003). Fusarium head blight of barley: impact, epidemics, management, and strategies for identifying and utilizing genetic resources. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 241–295). St. Paul, MN: APS Press.Google Scholar
  51. Tekauz, A., McCallum, B., & Gilbert, J. (2000). Review: Fusarium head blight of barley in western Canada. Canadian Journal of Plant Pathology, 22, 9–16.CrossRefGoogle Scholar
  52. Walter, S., Nicholson, P., & Doohan, F. (2010). Action and reaction of host and pathogen during fusarium head blight disease. New Phytology, 185, 54–66.CrossRefGoogle Scholar
  53. Yu, G. T., Franckowiak, J. D., Neate, S. M., Zhang, B., & Horsley, R. D. (2010). A native QTL for fusarium head blight resistance in North American barley (Hordeum vulgare L.) independent of height, maturity, and spike type loci. Genome, 53, 111–118.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Sivakumar K. Chamarthi
    • 1
  • Kundan Kumar
    • 1
  • Raghavendra Gunnaiah
    • 1
  • Ajjamada C. Kushalappa
    • 1
  • Yves Dion
    • 3
  • Thin M. Choo
    • 2
  1. 1.Plant Science DepartmentMcGill UniversitySainte-Anne-de-BellevueCanada
  2. 2.Eastern Cereal and Oilseed Research CentreAgriculture and Agri-Food CanadaOttawaCanada
  3. 3.Centre De Recherché Sur Les Grains Inc.Saint-Mathieu-de-BeloeilCanada

Personalised recommendations