European Journal of Plant Pathology

, Volume 137, Issue 4, pp 727–742 | Cite as

Relation between plant nutrition, hormones, insecticide applications, bacterial endophytes, and Candidatus Liberibacter Ct values in citrus trees infected with Huanglongbing

  • Weishou Shen
  • Juan M. Cevallos-Cevallos
  • Ulisses Nunes da Rocha
  • Hector A. Arevalo
  • Philip A. Stansly
  • Pamela D. Roberts
  • Ariena H. C. van BruggenEmail author
Original Research


Intensive insecticide and nutrient management have been attempted worldwide to reduce citrus huanglongbing (HLB) symptom development and yield loss. However, effects of insecticide and nutrient applications on HLB have been poorly understood. Leaf nutrients, jasmonic and salicylic acid contents, cycle threshold (Ct) values of Ca. Liberibacter asiaticus (Las), and community structure of endophytic α-proteobacteria were evaluated after insecticide treatment, ‘nutrition’ treatment (including systemic resistance inducing agents), or both in comparison with a control in a two-factor field experiment in 2008–2012. Leaf N, Mn, Zn and B significantly increased whilst Cu decreased after nutrient applications. Salicylic acid significantly increased in old leaves treated with insecticides, nutrients or both, and in young leaves treated with nutrients only. The jasmonic acid concentration was highest after the nutrition treatment in both old and young leaves. Ct values of Las and leaf area and weight significantly increased after long-term nutrient applications in 2011 and/or 2012. Redundancy analysis of the endophytic α-proteobacteria community structure indicated that the communities were mainly separated according to nutrient applications, which were positively associated with Ct values of Las and Ca, Mn, Zn, B, Mg, and Fe contents in leaf samples collected in 2012. Thus, effects of insecticides on HLB were significant in the early 2-year period whilst nutrients had significant effects on Las content and leaf size and weight after at least 3 years of application.


Boyd’s nutritional program Ca. Liberibacter asiaticus Cycle threshold (Ct) value Induced systemic resistance (ISR) Huanglongbing (HLB) Systemic acquired resistance (SAR) 



The authors would like to thank Stephanie Shea Teems for her work with real-time PCR analyses of leaf samples at Southwest Florida Research and Education Center, University of Florida. We also like to thank Debbie Jones of the Division of Plant Industries (DPI) for providing negative and positive control samples of citrus leaves and for teaching some of us the real-time qPCR techniques used at the DPI in Gainesville. We are grateful to Ganyu Gu, Hongling Er and Christinah Chiyaka for their help with sampling. We thank Ellen Dickstein for organizing soil and plant nutrient analyses at the Soil Analysis lab of the University of Florida. Funding for this research was provided by the Emerging Pathogens Institute and the Smallwood Foundation.

Supplementary material

10658_2013_283_MOESM1_ESM.pdf (165 kb)
Fig. S1 Denaturing gradient gel electrophoresis (DGGE) profiles of the α-proteobacterial 16S ribosomal RNA genes from ‘Valencia’ orange midribs/petioles under different management regimes. N1I0 = nutritionals only, N0I1 = insecticides only, N1I1 = Nutrionals plus insecticides, N0I0 = untreated control. (PDF 164 kb)


  1. Ahmad, K., Sijam, K., Hashim, H., Rosli, Z., & Abdu, A. (2011). Field assessment of calcium, copper and zinc ions on plant recovery and disease severity following infection of Huanglongbing (HLB) disease. African Journal of Microbiology Research, 5, 4967–4979.Google Scholar
  2. Birkemeyer, C., Kolasa, A., & Kopka, J. (2003). Comprehensive chemical derivatization for gas chromatography–mass spectrometry-based multi-targeted profiling of the major phytohormones. Journal of Chromatography, A, 993, 89–102.CrossRefGoogle Scholar
  3. Bonani, J. P., Fereres, A., Garzo, E., Miranda, M. P., Appezzato-Da-Gloria, B., & Lopes, J. R. S. (2010). Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings. Entomologia Experimentalis et Applicata, 134, 35–49.CrossRefGoogle Scholar
  4. Bové, J. M. (2006). Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7–37.Google Scholar
  5. Chiyaka, C., Singer, B. H., Halbert, S. E., Morris, J. G., & van Bruggen, A. H. C. (2012). Modeling huanglongbing transmission within a citrus tree. Proceedings of the National Academy of Sciences of the United States of America, 109, 12213–12218.PubMedCrossRefGoogle Scholar
  6. Coletta-Filho, H. D., Carlos, E. F., Alves, K. C. S., Pereira, M. A. R., Boscariol-Camargo, R. L., de Souza, A. A., et al. (2010). In planta multiplication and graft transmission of Candidatus Liberibacter asiaticus revealed by real-time PCR. European Journal of Plant Pathology, 126, 53–60.CrossRefGoogle Scholar
  7. Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, 28, 33–46.CrossRefGoogle Scholar
  8. Etxeberria, E., Gonzalez, P., Achor, D., & Albrigo, G. (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology, 74, 76–83.CrossRefGoogle Scholar
  9. Folimonova, S. Y., Robertson, C. J., Garnsey, S. M., Gowda, S., & Dawson, W. O. (2009). Examination of the responses of different genotypes of citrus to Huanglongbing (Citrus Greening) under different conditions. Phytopathology, 99, 1346–1354.PubMedCrossRefGoogle Scholar
  10. Francis, M. I., Redondo, A., Burns, J. K., & Graham, J. H. (2009). Soil application of imidacloprid and related SAR-inducing compounds produces effective and persistent control of citrus canker. European Journal of Plant Pathology, 124, 283–292.CrossRefGoogle Scholar
  11. Gomes, N. C. M., Heuer, H., Schönfeld, J., Costa, R., Mendonça-Hagler, L., & Smalla, K. (2001). Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil, 232, 167–180.CrossRefGoogle Scholar
  12. Gottwald, T. R. (2010). Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology, 48, 119–139.PubMedCrossRefGoogle Scholar
  13. Gottwald, T. R., da Graça, J. V., Bassanezi, R. B. (2007). Citrus Huanglongbing: the pathogen and its impact. Online. Plant Health Progress doi: 10.1094/PHP-2007-0906-01-RV.
  14. Gottwald, T. R., Graham, J. H., Irey, M. S., McCollum, T. G., & Wood, B. W. (2012). Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Protection, 36, 73–82.CrossRefGoogle Scholar
  15. Gu, G., Cevallos-Cevallos, J. M., Vallad, G. E., & van Bruggen, A. H. C. (2013). Organically managed soils reduce internal colonization of tomato plants by Salmonella enterica serovar Typhimurium. Phytopathology, 103, 381–388.PubMedCrossRefGoogle Scholar
  16. Halbert, S. E. (2005). The discovery of huanglongbing in Florida. In: Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop. Orlando, FL: Florida Citrus Mutual.Google Scholar
  17. Halbert, S. E., & Manjunath, K. L. (2004). Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomologist, 87, 330–353.CrossRefGoogle Scholar
  18. Hall, D. G., & Nguyen, R. (2010). Toxicity of pesticides to Tamarixia radiata, a parasitoid of the Asian citrus psyllid. Biocontrol, 55, 601–611.CrossRefGoogle Scholar
  19. Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. H. (1997). Analysis of actinomycete communities by specific amplification of 16S rDNA and gel electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63, 3233–3241.PubMedGoogle Scholar
  20. Ichinose, K., Miyazi, K., Matsuhira, K., Yasuda, K., Sadoyama, Y., Do, H. T., et al. (2010). Unreliable pesticide control of the vector psyllid Diaphorina citri (Hemiptera: Psyllidae) for the reduction of microorganism disease transmission. Journal of Environmental Science and Health. Part. B, 45, 466–472.CrossRefGoogle Scholar
  21. Inoue, H., Ohnishi, J., Ito, T., Tomimura, K., Miyata, S., Iwanami, T., et al. (2009). Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Annals of Applied Biology, 155, 29–36.CrossRefGoogle Scholar
  22. Jagoueix, S., Bové, J. M., & Garnier, M. (1996). PCR detection of the two ‘Candidatus’ liberobacter species associated with greening disease of citrus. Molecular and Cellular Probes, 10, 43–50.PubMedCrossRefGoogle Scholar
  23. Kim, J. S., Sagaram, U. S., Burns, J. K., Li, J. L., & Wang, N. (2009). Response of sweet orange (Citrus sinensis) to Candidatus Liberibacter asiaticus infection: microscopy and microarray analyses. Phytopathology, 99, 50–57.PubMedCrossRefGoogle Scholar
  24. Klessig, D. F., Durner, J., Noad, R., Navarre, D. A., Wendehenne, D., Kumar, D., et al. (2000). Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 97, 8849–8855.PubMedCrossRefGoogle Scholar
  25. Li, W., Hartung, J. S., & Levy, L. (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods, 66, 104–115.PubMedCrossRefGoogle Scholar
  26. Loake, G., & Grant, M. (2007). Salicylic acid in plant defence—the players and protagonists. Current Opinion in Plant Biology, 10, 466–472.PubMedCrossRefGoogle Scholar
  27. Mangomere, T. O., Obukosia, S. D., Mutitu, E., Ngichabe, C., Olubayo, F., Shibairo, S. (2009). Molecular characterization of candidatus Liberibacter species/strains causing huanglongbing disease of citrus in Kenya. Electronic Journal of Biotechnology, 12, 1–14.
  28. Martinelli, F., Uratsu, S. L., Albrecht, U., Reagan, R. L., Phu, M. L., Britton, M., et al. (2012). Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS ONE, 7, e38039. doi: 10.1371/journal.pone.0038039.PubMedCrossRefGoogle Scholar
  29. Masaoka, Y., Holford, P., Beattie, A., Iwanami, T., Pustika, A., Subandiyah, S., et al. (2011). Lower concentrations of microelements in leaves of citrus infected with ‘Candidatus Liberibacter asiaticus’. Japan Agricultural Research Quarterly, 45, 269–275.CrossRefGoogle Scholar
  30. Musetti, R., Polizzotto, R., Grisan, S., Martini, M., Borselli, S., Carraro, L., et al. (2007). Effects induced by fungal endophytes in Catharanthus roseus tissues infected by phytoplasmas. Bulletin of Insectology, 60, 293–294.Google Scholar
  31. Mylavarapu, R. S., & Moon, D. L. (2007). UF/IFAS Extension Soil Testing Laboratory (ESTL) Analytical Procedures and Training Manual Circular 1248. Gainesville: Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.Google Scholar
  32. Patt, J. M., & Sétamou, M. (2010). Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its Rutaceous host plants. Environmental Entomology, 39, 618–624.PubMedCrossRefGoogle Scholar
  33. Pelz-Stelinski, K. S., Brlansky, R. H., Ebert, T. A., & Rogers, M. E. (2010). Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). Journal of Economic Entomology, 103, 1531–1541.PubMedCrossRefGoogle Scholar
  34. Pereira, F. M. V., & Pereira Milori, D. M. B. (2009). Investigation of the stages of citrus greening disease using micro synchrotron radiation X-ray fluorescence in association with chemometric tools. Journal of Analytical Atomic Spectrometry, 25, 351–355.CrossRefGoogle Scholar
  35. Qureshi, J. A., & Stansly, P. A. (2009). Insecticidal control of Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Proceedings of the Florida State Horticultural Society, 172.Google Scholar
  36. Qureshi, J. A., & Stansly, P. A. (2010). Dormant season foliar sprays of broad spectrum insecticides: an effective component of integrated management for Diaphorina citri (Hemiptera: Psyllidae) in citrus orchards. Crop Protection, 29, 860–866.CrossRefGoogle Scholar
  37. Razi, M. F., Khan, I. A., & Jaskani, M. J. (2011). Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pakistan Journal of Agricultural Sciences, 48, 299–304.Google Scholar
  38. Rogers, M. E., & Ebert, T. A. (2009). Seasonality of psyllids carrying the HLB pathogen. Citrus Industry Update, University of Florida. October-November 2009, 4–5.Google Scholar
  39. Shen, W., Halbert, S. E., Dickstein, E., Manjunath, K. L., Shimwela, M. M., & van Bruggen, A. H. C. (2013). Occurrence and in-grove distribution of citrus huanglongbing in North Central Florida. Journal of Plant Pathology, 95, 361–371.Google Scholar
  40. Sigler, W. V., Miniaci, C., & Zeyer, J. (2004). Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. Journal of Microbiological Methods, 57, 17–22.PubMedCrossRefGoogle Scholar
  41. Stansly, P. A., Arevalo, H. A., Rouse, R. E. (2011). Role of nutritional and insecticidal treatments in mitigation of HLB: main effects and interactions. Page 188 in. Proceedings of the second International Research Conference on Huanglongbing (IRCHLB) at Orlando, Florida, January 2011. Plant Management Network. 292 pp.
  42. Stansly, P. A., Arevalo, H. A., Qureshi, J. A., Jones, M. M., Hendricks, K., Roberts, P. D., et al. (2013). Vector control and foliar nutrition to maintain economic sustainablility of bearing citrus in Florida groves affected by huanglongbing. Pest Management Science. doi: 10.1002/ps.3577.Google Scholar
  43. Stokstad, E. (2012). Dread citrus disease turns up in California, Texas. Science, 336, 283–284.Google Scholar
  44. Teixeira, D. C., Saillard, C., Couture, C., Martins, E. C., Wulff, N. A., Eveillard-Jagoueix, S., et al. (2008). Distribution and quantification of Candidatus Liberibacter americanus, agent of huanglongbing disease of citrus in Sao Paulo State, Brazil, in leaves of an affected sweet orange tree as determined by PCR. Molecular and Cellular Probes, 22, 139–150.PubMedCrossRefGoogle Scholar
  45. Thaler, J. S., Humphrey, P. T., & Whiteman, N. K. (2012). Evolution of jasmonate and salicylate signal cross-talk. Trends in Plant Science, 17, 260–270.PubMedCrossRefGoogle Scholar
  46. Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 67, 1258–1268.PubMedCrossRefGoogle Scholar
  47. Tuma, R. S., Beaudet, M. P., Jin, X., Jones, L. J., Cheung, C. Y., Yue, S., et al. (1999). Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Analytical Biochemistry, 268, 278–288.PubMedCrossRefGoogle Scholar
  48. Wakgari, W. M., & Giliomee, J. H. (2003). Natural enemies of three mealybug species (Hemiptera: Pseudococcidae) found on citrus and effects of some insecticides on the mealybug parasitoid Coccidoxenoides peregrinus (Hymenoptera: Encyrtidae) in South Africa. Bulletin of Entomological Research, 93, 243–254.PubMedCrossRefGoogle Scholar
  49. Watanabe, K., Kodama, Y., & Harayama, S. (2001). Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods, 44, 253–262.PubMedCrossRefGoogle Scholar
  50. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.PubMedGoogle Scholar
  51. Xia, Y., Ouyang, G., Sequeira, R. A., Takeuchi, Y., Baez, I., & Chen, J. (2011). A review of huanglongbing (citrus greening) management in citrus using nutritional approaches in China. Plant Health Progress. doi: 10.1094/PHP-2010-1003-01-RV.Google Scholar
  52. Xue, D., Yao, H. Y., & Huang, C. Y. (2006). Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant and Soil, 288, 319–331.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Weishou Shen
    • 1
    • 2
  • Juan M. Cevallos-Cevallos
    • 1
    • 3
  • Ulisses Nunes da Rocha
    • 1
    • 4
  • Hector A. Arevalo
    • 5
  • Philip A. Stansly
    • 5
  • Pamela D. Roberts
    • 5
  • Ariena H. C. van Bruggen
    • 1
    Email author
  1. 1.Emerging Pathogens Institute and Department of Plant PathologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Environmental Science and EngineeringNanjing Normal UniversityNanjingChina
  3. 3.Centro de Investigaciones Biotecnológicas del Ecuador (CIBE)Escuela Superior Politécnica del Litoral (ESPOL)GuayaquilEcuador
  4. 4.Lawrence Berkeley National Laboratory, Earth Sciences DivisionBerkeleyUSA
  5. 5.Southwest Florida Research and Education CenterUniversity of FloridaImmokaleeUSA

Personalised recommendations