Advertisement

European Journal of Plant Pathology

, Volume 137, Issue 3, pp 597–607 | Cite as

Development and evaluation of specific PCR and LAMP assays for the rapid detection of Phytophthora melonis

  • Qinghe Chen
  • Benjin Li
  • Peiqing Liu
  • Chengzhong Lan
  • Zhixiong ZhanEmail author
  • Qiyong WengEmail author
Article

Abstract

Phytophthora melonis is a widespread and devastating pathogen for the Cucurbitaceae family. Early and accurate detection of P. melonis is essential to control the disease in the field. To establish a simple, visual, and rapid detection system for P. melonis, we developed nested polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) systems based on the Ras-related protein (Ypt1) gene. All 36 isolates of P. melonis, from geographically distinct counties in China, yielded positive detection results on LAMP or nested PCR assays. No cross reaction was observed with other oomycetes or fungal pathogens. A sensitivity assay showed that both methods had a detection limit of 10 fg genomic DNA. We also detected P. melonis in diseased cucumber tissues and soils, and evaluated positive detection rates using LAMP, nested PCR, and conventional isolation methods. The results suggest that the LAMP assay has the greatest potential for active detection of P. melonis in regions that are at risk of contracting the disease, and for use in resource-poor settings.

Keywords

Loop-mediated isothermal amplification (LAMP) Molecular detection Phytophthora melonis Ras-related protein (Ypt1) gene 

Notes

Acknowledgments

This work was supported by grants from the Natural Science Foundation for Distinguished Young Scholars of Fujian Province (2011J06010), Doctoral Foundation of FAAS (2012DBS-2), and Special Fund for Agro-scientific Research in the Public Interest (201303018; 200903034).

Supplementary material

10658_2013_273_MOESM1_ESM.doc (64 kb)
ESM 1 (DOC 64 kb)

References

  1. Blair, J. E., Coffey, M. D., Park, S. Y., Geiser, D. M., & Kang, S. (2008). A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genetics and Biology, 45, 266–277.PubMedCrossRefGoogle Scholar
  2. Chen, L., Zhu, S., Lu, X., Pang, Z., Cai, M., & Liu, X. (2012). Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic ccid amide fungicides. PLoS ONE, 7, e42069.PubMedCrossRefGoogle Scholar
  3. Dai, T. T., Lu, C. C., Lu, J., Dong, S., Ye, W., Wang, Y., et al. (2012). Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiology Letters, 334, 27–34.PubMedCrossRefGoogle Scholar
  4. Guharoy, S., Bhattacharyya, S., Mukherjee, S., Mandal, N., & Khatua, D. (2006). Phytophthora melonis associated with fruit and vine rot disease of pointed gourd in India as revealed by RFLP and sequencing of ITS region. Journal of Phytopathology, 154, 612–615.CrossRefGoogle Scholar
  5. Haubruck, H., Disela, C., Wagner, P., & Gallwitz, D. (1987). The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene. The EMBO Journal, 6, 4049.PubMedGoogle Scholar
  6. Henson, J. M., & French, R. (1993). The polymerase chain reaction and plant disease diagnosis. Annual Review of Phytopathology, 31, 81–109.PubMedCrossRefGoogle Scholar
  7. Ho, H., Gallegly, M., & Hong, C. (2007). Redescription of Phytophthora melonis. Mycotaxon, 102, 339–345.Google Scholar
  8. Kaneko, H., Kawana, T., Fukushima, E., & Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70, 499–501.PubMedCrossRefGoogle Scholar
  9. Katsura, K. (1976). Two new species of Phytophthora causing damping-off of cucumber and trunk rot of chestnut. Transactions of the Mycological Society of Japan, 17(3/4), 238–242.Google Scholar
  10. Kroon, L., Bakker, F., Van Den Bosch, G., Bonants, P., & Flier, W. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41, 766–782.PubMedCrossRefGoogle Scholar
  11. Li, B., Du, J., Lan, C., Liu, P., Weng, Q., & Chen, Q. (2013). Development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 135, 903–911.CrossRefGoogle Scholar
  12. Mao, Z., Qiu, Y., Zheng, L., Chen, J., & Yang, J. (2012). Development of a visual loop-mediated isothermal amplification method for rapid detection of the bacterial pathogen Pseudomonas putida of the large yellow croaker (Pseudosciaena croacea). Journal of Microbiological Methods, 89, 179–184.PubMedCrossRefGoogle Scholar
  13. Martin, F. N., Abad, Z. G., Balci, Y., & Ivors, K. (2012). Identification and detection of phytophthora: reviewing our progress, identifying our needs. Plant Disease, 96, 1080–1103.CrossRefGoogle Scholar
  14. Meng, J., & Wang, Y. (2010). Rapid detection of Phytophthora nicotianae in infected tobacco tissues and soil samples based on its Ypt1 gene. Journal of Phytopathology, 158, 1–7.CrossRefGoogle Scholar
  15. Mirabolfathy, M., Cooke, D. E. L., Duncan, J. M., Williams, N. A., Ershad, D., & Alizadeh, A. (2001). Phytophthora pistaciae sp. nov. and P. melonis: the principal causes of pistachio gummosis in Iran. Mycological Research, 105, 1166–1175.CrossRefGoogle Scholar
  16. Mori, Y., & Notomi, T. (2009). Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy, 15, 62–69.PubMedCrossRefGoogle Scholar
  17. Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T., & Notomi, T. (2001). Loop-mediated isothermal amplification reaction using a nondenatured template. Clinical Chemistry, 47, 1742–1743.PubMedGoogle Scholar
  18. Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16, 223–229.PubMedCrossRefGoogle Scholar
  19. Nakao, R., Stromdahl, E. Y., Magona, J. W., Faburay, B., Namangala, B., Malele, I., et al. (2010). Development of loop-mediated isothermal amplification (LAMP) assays for rapid detection of Ehrlichia ruminantium. BMC Microbiology, 10, 296.PubMedCrossRefGoogle Scholar
  20. Niu, J., Jian, H., Guo, Q., Chen, C., Wang, X., Liu, Q., et al. (2012). Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 61, 809–819.CrossRefGoogle Scholar
  21. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.PubMedCrossRefGoogle Scholar
  22. Osawa, R., Yoshida, A., Masakiyo, Y., Nagashima, S., Ansai, T., Watari, H., et al. (2007). Rapid detection of Actinobacillus actinomycetemcomitans using a loop-mediated isothermal amplification method. Oral Microbiology and Immunology, 22, 252–259.PubMedCrossRefGoogle Scholar
  23. Pavón, C., Babadoost, M., & Lambert, K. (2008). Quantification of Phytophthora capsici oospores in soil by sieving-centrifugation and real-time polymerase chain reaction. Plant Disease, 92, 143–149.CrossRefGoogle Scholar
  24. Poppert, S., Essig, A., Stoehr, B., Steingruber, A., Wirths, B., Juretschko, S., et al. (2005). Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. Journal of Clinical Microbiology, 43, 3390–3397.PubMedCrossRefGoogle Scholar
  25. Rigano, L. A., Marano, M. R., Castagnaro, A. P., Do Amaral, A. M., & Vojnov, A. A. (2010). Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiology, 10, 176.PubMedCrossRefGoogle Scholar
  26. Ristaino, J. (1990). Intraspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology, 80, 1253–1259.CrossRefGoogle Scholar
  27. Schena, L., & Cooke, D. E. L. (2006). Assessing the potential of regions of the nuclear and mitochondrial genome to develop a “molecular tool box” for the detection and characterization of Phytophthora species. Journal of Microbiological Methods, 67, 70–85.PubMedCrossRefGoogle Scholar
  28. Schena, L., Hughes, K. J. D., & Cooke, D. E. L. (2006). Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7, 365–379.PubMedCrossRefGoogle Scholar
  29. Schena, L., Duncan, J., & Cooke, D. (2008). Development and application of a PCR-based ‘molecular tool box’ for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathology, 57, 64–75.Google Scholar
  30. Silvar, C., Duncan, J., Cooke, D., Williams, N., Díaz, J., & Merino, F. (2005). Development of specific PCR primers for identification and detection of Phytophthora capsici Leon. European Journal of Plant Pathology, 112, 43–52.CrossRefGoogle Scholar
  31. Skottman, T., Piiparinen, H., Hyytiäinen, H., Myllys, V., Skurnik, M., & Nikkari, S. (2007). Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. European Journal of Clinical Microbiology and Infectious Diseases, 26, 207–211.PubMedCrossRefGoogle Scholar
  32. Tomlinson, J., Barker, I., & Boonham, N. (2007). Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 73, 4040–4047.PubMedCrossRefGoogle Scholar
  33. Tooley, P., Bunyard, B., Carras, M., & Hatziloukas, E. (1997). Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and Environmental Microbiology, 63, 1467–1475.PubMedGoogle Scholar
  34. Trout, C., Ristaino, J., Madritch, M., & Wangsomboondee, T. (1997). Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Disease, 81, 1042–1048.CrossRefGoogle Scholar
  35. Wang, Y., Ren, Z., & Zheng, X. (2007). Detection of Phytophthora melonis in samples of soil, water, and plant tissue with polymerase chain reaction. Canadian Journal of Plant Pathology, 29, 172–181.CrossRefGoogle Scholar
  36. Yamazaki, W., Kumeda, Y., Misawa, N., Nakaguchi, Y., & Nishibuchi, M. (2010). Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species. Applied and Environmental Microbiology, 76, 820–828.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  1. 1.Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouChina

Personalised recommendations