European Journal of Plant Pathology

, Volume 137, Issue 3, pp 585–596 | Cite as

Isolation of the most common Fusarium species and the effect of soil solarisation on main pathogenic species in different climatic zones of Iran

  • Hossein SaremiEmail author
  • Hanieh Saremi


Understanding the distribution pattern of the Fusarium species can help prevent crop diseases and large yield losses. While several approaches have been used to control soil-borne pathogens, soil solarisation has shown promising results in managing these pathogens. The main objectives of this study were to: (i) describe the biogeography of Fusarium species in four different climatic zones in Iran and (ii) explain the effect of soil solarisation on main pathogenic Fusarium species in wheat grains, beans and date palms. A total of 12 sub-samples were collected from four different climatic zones including, Rasht (humid), Zanjan (semi-arid), Isfahan (extra-arid) and Ahwaz (arid). For precise identification, molecular-phylogenetic analyses of the species were also performed. From these four sites 17 Fusarium species were recovered. F. solani complex, F. oxysporum and F. equiseti were the only species found in all four regions; whereas F. compactum, F. sambucinum and F. fujikuroi were restricted to Ahwaz, Zanjan and Rasht, respectively. Furthermore, soil solarisation treatments were applied to F. pseudograminearum, F. solani and F. oxysporum, as the main cause of root rot pathogens and wilt disease of wheat, bean and date palm, respectively. After 6 weeks of soil solarisation application, the population densities of these species were decreased from 900 to 100 CFU g−1 in F. solani, from 600 to 50 CFU g−1 in F. oxysporum and from 550 to 0 CFU g−1 in F. pseudograminearum showing a promising result in controlling soil-borne pathogens. Mycogeography of Fusarium species and the effect of soil solarisation can help improve the management control strategies of these soil-borne fungi.


Diverse climatic regime Fusarium Mycogeography Population density Temperature 


  1. Annesi, T., & Motta, E. (1994). Soil solarization in an Italian forest nursery. European Journal of Forest Pathology, 24(4), 203–209.CrossRefGoogle Scholar
  2. Ashrafi, S. J., Rastegar, M. F., & Saremi, H. (2010). Rosemary wilting disease and its management by soil solarization technique in Iran. African Journal of Biotechnology, 9(42), 7048–7057.Google Scholar
  3. Backhouse, D., & Burgess, L. W. (1995). Mycogegraphy of Fusarium climatic: analysis of the distribution within Australia of Fusarium species in section Gibbosum. Mycological Research, 99, 1218–1224.CrossRefGoogle Scholar
  4. Balajee, S. A., Borman, A. M., Brandt, M. E., Cano, J., Cuenca-Estrella, M., Dannaoui, E., et al. (2009). Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: where are we and where should we go from here? Journal of Clinical Microbiology, 47(4), 877–884.PubMedCrossRefGoogle Scholar
  5. Bonanomi, G., Chiurazzi, M., Caporaso, S., Del Sorbo, G., Moschetti, G., & Felice, S. (2008). Soil solarization with biodegradable materials and its impact on soil microbial communities. Soil Biology and Biochemistry, 40(8), 1989–1998.CrossRefGoogle Scholar
  6. Borman, A. M., Linton, C. J., Miles, S.-J., & Johnson, E. M. (2008). Molecular identification of pathogenic fungi. Journal of Antimicrobial Chemotherapy, 61, 7–12.CrossRefGoogle Scholar
  7. Bryan, G. T., Daniels, M. J., & Osbourn, A. E. (1995). Comparison of fungi within the Gaeumannomyces-Phialophora complex by analysis of ribosomal DNA sequence. Applied and Environmental Microbiology, 61, 681–689.PubMedGoogle Scholar
  8. Burgess, L. W. (1981). General ecology of the fusaria. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: Diseases, biology, and taxonomy (pp. 225–235). Philadelphia: Pennsylvania State University Press.Google Scholar
  9. Burgess, L. W., & Summerell, B. A. (1992). Mycogeography of Fusarium: survey of Fusarium species in subtropical and semi-arid grassland soils from Queensland, Australia. Mycological Research, 96(9), 780–784.CrossRefGoogle Scholar
  10. Burgess, L. W., Nelson, P. E., Toussoun, T. A., & Forbes, G. A. (1988). Distribution of Fusarium species in sections Roseum, Arthrosporiella, Gibbosum and discolor recovered from grassland, pasture and pine nursery soils of eastern Australia. Mycologia, 80(6), 815–824.CrossRefGoogle Scholar
  11. Burgess, L. W., Summerell, B. A., Bullock, S., Gott, K. P., & Backhouse, D. (1994). Laboratory manual for Fusarium research (3rd ed.). Sydney: Dept. of Crop Sciences, University of Sydney / Royal Botanic Gardens.Google Scholar
  12. Chehri, K., Salleh, B., Soleimani, M. J., Reddy, K. R. N., & Zakaria, L. (2010). Occurrence of Fusarium spp. associated with root tissues and rhizosphere soils of forest trees and assessment of their pathogenicity on Prunus amygdalus seedling. Australian Journal of Botany, 58, 679–686.Google Scholar
  13. De Martonne, E. (1926). Une Nouvelle fonction climatologique. L’Indice d’aridité. La Meteorologie, 2, 449–458.Google Scholar
  14. De Vay, J. E., & Katan, J. (1991). Mechanisms of pathogen control in solarized soils. In J. Katan & J. E. De Vay (Eds.), Soil solarization (pp. 87–102). Boca Raton: CRC Press.Google Scholar
  15. Desjardins, A. E. (2006). Fusarium mycotoxins: Chemistry, genetics and biology. St Paul: APS Press, The American Phytopathological Society.Google Scholar
  16. Gamliel, A., & Katan, J. (2012). Soil solarization: Theory and practice. St. Paul: APS Press.Google Scholar
  17. Hajieghrari, B. (2009). Wheat crown and root rotting fungi in Moghan area, Northwest of Iran. African Journal of Biotechnology, 8(22), 6214–6219.Google Scholar
  18. Harender, R., & Sharma, S. D. (2009). Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. Scientia Horticulture, 119, 126–131.CrossRefGoogle Scholar
  19. Jeschke, N., Nelson, P. E., & Marasas, W. F. O. (1990). Fusarium species isolated from soil samples collected at different altitudes in the Transkei, Southern Africa. Mycologia, 82(6), 727–733.CrossRefGoogle Scholar
  20. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Iowa: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  21. Leslie, J. F., Pearson, C. A. S., Nelson, P. E., & Toussoun, T. A. (1990). Fusarium spp. from corn,sorghum and soybean fields in the central and eastern United States. Phytopathology, 80, 343–350.CrossRefGoogle Scholar
  22. Lopez-Herrera, C. J., Perez-Jimenez, R. M., Basallote-Ureba, M. J., Zea Bonilla, T., & Melero-Vara, J. M. (1997). Effect of soil solarization on the control of Phytophthora root rot in avocado. Plant Pathology, 46(3), 329–340.CrossRefGoogle Scholar
  23. Marasas, W. F. O., Kriek, N. P. J., Wiggins, V. M., Steyn, P. S., Towers, D. K., & Hastie, T. J. (1979). Incidence, geographic distribution, and toxigenicity of Fusarium species in South African corn. Phytopathology, 69, 1181–1185.CrossRefGoogle Scholar
  24. Marasas, W. F. O., Jaskiewicz, K., Venter, F. S., & Van Schalkwyk, D. J. (1988). Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. South African Medical Journal, 74, 110–114.PubMedGoogle Scholar
  25. Min, B. R., Kim, K. A., & Choi, Y. K. (1998). Electrophoretic karyotypes of Fusarium oxysporum formae speciales. The Journal of Microbiology, 36, 14–19.Google Scholar
  26. Minuto, A., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2006). Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection, 25, 468–475.CrossRefGoogle Scholar
  27. Mulé, G., Susca, A., Stea, G., & Moretti, A. (2004). A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides. F. proliferatum and F. subglutinans. European Journal of Plant Pathology, 110, 495–502.CrossRefGoogle Scholar
  28. Naseri, B. (2008). Root rot of common bean in Zanjan, Iran: major pathogens and yield loss estimates. Australasian Plant Pathology, 37, 546–551.CrossRefGoogle Scholar
  29. Nash, S. M., & Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology, 52, 567–572.Google Scholar
  30. Nelson, P. E., Toussoun, T. A., & Burgess, L. W. (1987). Characterization of Fusarium beomiforme sp. nov. Mycologia, 79(6), 884–889.CrossRefGoogle Scholar
  31. O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia, 92, 919–938.CrossRefGoogle Scholar
  32. Raeder, V., & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1, 17–20.CrossRefGoogle Scholar
  33. Rahimi, J., Ebrahimpour, M., & Khalili, A. (2012). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology. doi: 10.1007/s00704-012-0741-8.Google Scholar
  34. Rahjoo, V., Zad, J., Javan-Nikkhah, M., Mirzaldi Gohari, A., Okkhovvat, S., Bihamta, M., et al. (2008). Morphological and molecular identification of Fusarium isolated from maize ears in Iran. Journal of Plant Pathology, 90(3), 463–468.Google Scholar
  35. Reischl, U., Youssef, M. T., Wolf, H., Hyytia-Trees, E., & Strockbine, N. A. (2004). Real-time fluorescence PCR assays for detection and characterization of heat-labile I and heat-stable I enterotoxin genes from enterotoxigenic Escherichia coli. Journal of Clinical Microbiology, 42, 4092–4100.PubMedCrossRefGoogle Scholar
  36. Sangalang, A. E., Burgess, L. W., Backhouse, D., Duff, J., & Wurst, M. (1995). Mycogeography of Fusarium species in soils from tropical, arid and mediterranean regions of Australia. Mycological Research, 99(5), 523–528.CrossRefGoogle Scholar
  37. Saremi, H. (2005). Fusarium, biology, ecology and taxonomy. Iran: Jihad Daneshgahi press, University of Mashhad.Google Scholar
  38. Saremi, H., Burgess, L. W., & Backhouse, D. (1999). Temperature effects on the relative abundance of Fusarium species in a model plant–soil ecosystem. Soil Biology and Biochemistry, 31(7), 941–947.CrossRefGoogle Scholar
  39. Saremi, H., Ammarellou, A., & Jafary, H. (2007a). Incidence of crown rot disease of wheat caused by Fusarium pseudograminearum as a new soil born fungal species in North West Iran. Pakistan Journal of Biological Sciences, 10(20), 3606–3612.PubMedCrossRefGoogle Scholar
  40. Saremi, H., Okhovvat, S. M., & Ashrafi, S. J. (2007b). Wilting of date palm branches by Fusarium oxysporum in south of Iran and its control managements with soil solarization method. Communications in Agricultural and Applied Biological Sciences, 72(4), 831–837.PubMedGoogle Scholar
  41. Saremi, H., Amiri, M. E., & Ashrafi, S. J. (2011). Epidemiological aspects of bean decline disease caused by Fusarium species and evaluation of the bean resistant cultivars to disease in Northwest, Iran. African Journal of Biotechnology, 10(66), 14954–14961.CrossRefGoogle Scholar
  42. Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin version 2.000: A software for population genetics data analysis. Geneva: University of Geneva, Genetics and Biochemistry Laboratory.Google Scholar
  43. Stapleton, J. J., & DeVay, J. E. (1986). Soil solarization: a non-chemical approach for management of plant pathogens and pest. Crop Protection, 5, 190–198.CrossRefGoogle Scholar
  44. Stapleton, J. J., Wilen, C. A., & Molinar, R. H. (2008). Soil Solarization for gardens & landscapes management. Davis: UC Statewide IPM Program, University of California.Google Scholar
  45. Summerell, B. A., Rugg, C. A., & Burgess, L. W. (1993). Mycogeography of Fusarium: survey of Fusarium species associated with forest and woodland communities in north Queensland, Australia. Mycological Research, 97(8), 1015–1019.CrossRefGoogle Scholar
  46. Summerell, B. A., Salleh, B., & Leslie, J. F. (2003). A utilitarian approach to Fusarium identification. Plant Disease, 87, 117–128.CrossRefGoogle Scholar
  47. Tamura, K., Dudley, J., Nei, M., & Kuma, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedCrossRefGoogle Scholar
  48. Thrane, U. (1990). Grouping Fusarium Section Discolor isolates by statistical analysis of quantitative high performance liquid chromatographic data on secondary metabolite production. Journal of Microbiological Methods, 12, 23–39.CrossRefGoogle Scholar
  49. Vidal, R., Vidal, M., Lagos, R., Levine, M., & Prado, V. (2004). Multiplex PCR for diagnosis of enteric infections associated with diarrheagenic Escherichia coli. Journal of Clinical Microbiology, 42, 1787–1789.PubMedCrossRefGoogle Scholar
  50. Vitale, S., Santori, A., Wajnberg, E., Castagnone-Sereno, P., Luongo, L., & Belisario, A. (2011). Morphological and molecular analysis of Fusarium lateritium, the cause of gray necrosis of hazelnut fruit in Italy. Phytopathology, 101(6), 679–686.PubMedCrossRefGoogle Scholar
  51. Wang, H., Xiao, M., Kong, F., Chen, S., Dou, H.-T., Sorrell, T., et al. (2011). Accurate and practical identification of 20 Fusarium species by Seven-Locus sequence analysis and reverse line blot hybridization, and an in vitro antifungal susceptibility study. Journal of Clinical Microbiology, 49(5), 1890–1898.PubMedCrossRefGoogle Scholar
  52. Xiangming, X., Bailey, J. A., & Cooke, B. M. (2010). Epidemiology of mycotoxin producing fungi. Netherlands: Kluwer Academic Publishers.Google Scholar
  53. Xu, X. M., Nicholson, P., Thomsett, M. A., Simpson, D., Cooke, B. M., Doohan, F. M., et al. (2008). Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology, 98, 69–78.PubMedCrossRefGoogle Scholar
  54. Zeng, X., Kong, F., Halliday, C., Chen, S., Lau, A., Playford, G., et al. (2007). Reverse line blot hybridization assay for identification of medically important fungi from culture and clinical specimens. Journal of Clinical Microbiology, 45(9), 2872–2880.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  1. 1.Department of Plant Protection and Entomology, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  2. 2.Ecosystem Management, School of Environmental and Rural ScienceUniversity of New EnglandArmidaleAustralia

Personalised recommendations