European Journal of Plant Pathology

, Volume 137, Issue 2, pp 363–376 | Cite as

Detection and characterization of fungicide resistant phenotypes of Botrytis cinerea in lettuce crops in Greece

  • Michael ChatzidimopoulosEmail author
  • Dimitris Papaevaggelou
  • Athanassios Christos Pappas


The development of resistance to chemical control agents needs continuous monitoring in Botrytis cinerea. 790 isolates from lettuce and other vegetable crops were collected from six widely separated sites in Greece and tested for their sensitivity to 11 fungicides from nine unrelated chemical groups. 44 of the isolates exhibited multiple resistance to fenhexamid (hydroxyanilides), azoxystrobin and pyraclostrobin (QoI’s), boscalid (SDHI’s), cyprodinil and pyrimethanil (anilinopyrimidines), fludioxonil (phenylpyrroles), carbendazim (benzimidazoles) and iprodione (dicarboximides). Thirty per cent of such phenotypes were detected in an experimental glasshouse with lettuce crops, the third year after commencing fungicide applications. The average resistance factor (Rf) for mycelial growth to fenhexamid, pyraclostrobin, boscalid, cyprodinil and fludioxonil, was over 40, 1,000, 100, 700 and 50, respectively. Some strains with high resistance to anilinopyrimidines (14 %) or moderate to fludioxonil (7 %) were detected even in isolates collected from vegetable crops prior to commercial use of these fungicides in Greece. Isolates with fludioxonil moderate resistance and fenhexamid high resistance, were detected for the first time in Greece. The results suggested the high risk in chemical control of grey mould due to development of resistance to most fungicides with site-specific modes of action. Isolates with resistance to fluazinam (phenylpyridinamines) and to chlorothalonil (phthalonitriles) were not found. The inclusion of appropriate multi-site inhibitors like chlorothalonil in fungicide anti-resistance strategies was indispensable.


Boscalid Cyprodinil Fenhexamid Fludioxonil Pyraclostrobin Pyrimethanil 













dimethyl sulfoxide


effective dose inhibiting the 50 % of mycelial growth or spore germination




highly resistant




malt extract agar


minimal inhibitory concentration


moderately resistant


potato dextrose agar




quinone outside inhibitors, strobilurins

Resistance factor (Rf)

average ED50 of resistant isolates/average ED50 of sensitive (wild type) isolates tested






succinate dehydrogenase inhibitors, carboxamides


salicylhydroxamic acid


  1. Banno, S., Yamashita, K., Fukumori, F., Okada, K., Uekusa, H., & Takagaki, M. (2009). Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathology, 58, 120–129.CrossRefGoogle Scholar
  2. Bardas, G. A., Myresiotis, C. K., & Karaoglanidis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98, 443–450.PubMedCrossRefGoogle Scholar
  3. Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science, 66, 967–973.PubMedCrossRefGoogle Scholar
  4. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.PubMedCrossRefGoogle Scholar
  5. Billard, A., Fillinger, S., Leroux, P., Lachaise, H., Beffa, R., & Debieu, D. (2011). Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea as shown by comparisons of isogenic strains. Pest Management Science, 68, 684–691.PubMedCrossRefGoogle Scholar
  6. Brent, K. J., & Hollomon, D. W. (Eds.). (2007). Fungicide resistance in crop protection: How can it be managed? FRAC Monograph No 1, second, and revised edition. Brussels: International Croplife.Google Scholar
  7. Debieu, D., Bach, J., Hugon, M., Malosse, C., & Leroux, P. (2001). The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest Management Science, 57, 1060–1067.PubMedCrossRefGoogle Scholar
  8. Esterio, M., Ramos, C., Walker, A. S., Fillinger, S., Leroux, P., & Auger, J. (2011). Phenotypic and genetic characterization of Chilean isolates of Botrytis cinerea with different levels of sensitivity to fenhexamid. Phytopathologia Mediterranea, 50, 414–420.Google Scholar
  9. Faretra, F., & Pollastro, S. (1993). Isolation, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana resistant to the phenylpyrrole fungicide CGA 173506. Mycological Research, 97, 620–624.CrossRefGoogle Scholar
  10. Fritz, R., Lanen, C., Colas, V., & Leroux, P. (1997). Inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pesticide Science, 49, 40–46.CrossRefGoogle Scholar
  11. Gisi, U., Sierotzki, H., Cook, A., & McCaffery, A. (2002). Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 58, 859–867.PubMedCrossRefGoogle Scholar
  12. Guo, Z., Miyoshi, H., Komyoji, T., Haga, T., & Fujita, T. (1991). Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochimica et Biophysica Acta, 1056, 89–92.CrossRefGoogle Scholar
  13. Heaney, S. P., Hall, A. A., Davies, S. A., & Olaya, G. (2000). Resistance to fungicides in the QoI-STAR cross-resistance group: current persectives. In Proceedings of Brighton Crop Protection Conference – Pests and Diseases, Brighton, U. K, November 13–16, 2000, Vol. 2, pp. 755–762. British Crop Protection CouncilGoogle Scholar
  14. Hilber, U. W., Schuepp, H., & Schwinn, F. J. (1994). Resistance risk evaluation of fludioxonil, a new phenylpyrrole fungicide. In S. Heaney, D. Slawson, D. W. Hollomon, M. Smith, P. E. Russel, & D. W. Parry (Eds.), Fungicide resistance (pp. 397–402). U.K: British Crop Protection Council.Google Scholar
  15. Joseph-Horne, T., & Hollomon, D. W. (2000). Functional diversity within the mitochondrial electron transport chain of plant pathogenic fungi. Pest Management Science, 56, 24–30.CrossRefGoogle Scholar
  16. Kalamarakis, A. E., Petsikos-Panagiotarou, N., Mavroidis, B., & Ziogas, B. N. (2000). Activity of fluazinam against strains of Botrytis cinerea resistant to benzimidazoles and/or dicarboximides and to a benzimidazole-phenylcarbamate mixture. Journal of Phytopathology, 148, 449–455.CrossRefGoogle Scholar
  17. Kim, Y. K., & Xiao, C. L. (2010). Resistance to pyraclostrobin and boscalid in populations of Botrytis cinerea from stored apples in Washington State. Plant Disease, 94, 604–612.CrossRefGoogle Scholar
  18. Koike, S. T., Gladders, P., & Paulus, A. O. (Eds.). (2007). Vegetable diseases: A colour handbook. London: Manson Publishing Ltd.Google Scholar
  19. Korolev, N., Mamiev, M., Zahavi, T., & Elad, Y. (2011). Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides. European Journal of Plant Pathology, 129, 591–608.CrossRefGoogle Scholar
  20. Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzinski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 195–222). Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. Leroux, P., Chapeland, F., Desbrosses, D., & Gredt, M. (1999). Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Protection, 18, 687–697.CrossRefGoogle Scholar
  22. Leroux, P., Gredt, M., Leroch, M., & Walker, A. S. (2010). Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology, 76, 6615–6630.PubMedCrossRefGoogle Scholar
  23. Mercier, J., Kong, M., & Cook, F. (2010). Fungicide resistance among Botrytis cinerea isolates from California strawberry fields. Plant Health Progress. doi: 10.1094/PHP-2010-0806-01-RS.Google Scholar
  24. Moyano, C., Gomez, V., & Melgarejo, P. (2004). Resistance to pyrimethanil and other fungicides in Botrytis cinerea populations collected on vegetable crops in Spain. Journal of Phytopathology, 152, 484–490.CrossRefGoogle Scholar
  25. Myresiotis, C. K., Karaoglanidis, G. S., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Disease, 91, 407–413.CrossRefGoogle Scholar
  26. Pappas, A. C. (1997). Evolution of fungicide resistance in Botrytis cinerea in protected crops in Greece. Crop Protection, 16, 257–263.CrossRefGoogle Scholar
  27. Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.CrossRefGoogle Scholar
  28. Stammler, G., Brix, H. D., Nave, B., Gold, R., & Schoelf, U. (2008). Studies on the biological performance of boscalid and its mode of action. In H. W. Dehne, H. B. Deising, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Proceedings of the 15th International Reinhardsbrunn Symposium on modern fungicides and antifungal compounds, Friedrichroda, Germany, May 6–10, 2007, pp. 45–51. Deutsche Phytomedizinische GesellschaftGoogle Scholar
  29. Tamura, O. (2000). Resistance development of grey mould on beans towards fluazinam and relevant counter-measures. In Proceedings of the 10th Symposium of Research Committee of Fungicides Resistance, Okayama, Japan, April 5, 2000, pp. 7–16. The Phytopathological Society of JapanGoogle Scholar
  30. Veloukas, T., Leroch, M., Hahn, M., & Karaoglanidis, G. S. (2011). Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Disease, 95, 1302–1307.CrossRefGoogle Scholar
  31. Vignutelli, A., Hilber-Bodmer, M., & Hilber, U. W. (2002). Genetic analysis of resistance to the phenylpyrrole fludioxonil and the dicarboximide vinclozolin in Botryotinia fuckeliana (Botrytis cinerea). Mycological Research, 106, 329–335.CrossRefGoogle Scholar
  32. Weber, R. W. S. (2011). Resistance of Botrytis cinerea to multiple fungicides in northern German small-fruit production. Plant Disease, 95, 1263–1269.CrossRefGoogle Scholar
  33. Zhang, C. Q., Hu, J. L., Wei, F. L., & Zhu, G. N. (2009). Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in Eastern China. Phytoparasitica, 37, 351–359.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Michael Chatzidimopoulos
    • 1
    Email author
  • Dimitris Papaevaggelou
    • 1
  • Athanassios Christos Pappas
    • 1
  1. 1.Department of Agriculture, Crop Production and Rural Environment, Laboratory of Plant PathologyUniversity of ThessalyVolosGreece

Personalised recommendations