European Journal of Plant Pathology

, Volume 137, Issue 2, pp 223–229 | Cite as

Detection of streptomycin resistance in Erwinia amylovora strains isolated from apple orchards in Chihuahua, Mexico

  • Adrian Ponce de León Door
  • Alejandro Romo Chacón
  • Carlos Acosta Muñiz.


Fire blight, one of the most severe diseases of apple and pear, is caused by the bacterium Erwinia amylovora. One control method is the use of antibiotics like streptomycin; however, streptomycin is the only antibiotic registered to control fire blight. A total of 107 E. amylovora strains were isolated from apple orchards located in Cuauhtémoc and Guerrero, Chihuahua, two major apple-producing areas in Mexico, showing 40 and 24 % streptomycin-resistant strains, respectively. The identification of E. amylovora strains was performed by polymerase chain reaction (PCR) amplification of a 900-bp region located within the non-transferable pEA29 plasmid and by amplification of a specific 1,269-bp region located on the E. amylovora chromosome. The 107 isolates tested carried the pEA29 plasmid, and 36 % of the isolates from both locations showed high resistance to streptomycin at levels that ranged from 200 to ≥1,000 μg ml−1 streptomycin. The strA-strB and aadA genes, which encode enzymes that inactivate streptomycin, and a mutation in codon 43 of the rpsL gene that confers high resistance to the antibiotic were examined to determine the mechanism of streptomycin resistance. In total, 95 % of the resistant strains showed a single base pair mutation in codon 43 of the rpsL gene, causing an amino acid substitution in ribosomal protein S12. The presence of strA-strB and aadA genes or the rpsL mutation was not identified in the other 5 % of resistant strains, suggesting the existence of a new streptomycin resistance mechanism in E. amylovora.


Erwinia amylovora Apple Fire blight Streptomycin resistance 



The authors thank José Carlos Galaviz-Rodríguez and Mayra Zamarrón-Ferreiro for technical assistance.


  1. Bereswill, S., Pahl, A., Bellemann, P., Zeller, W., & Geider, K. (1992). Sensitive and species specific detection of Erwinia amylovora by polymerase chain reaction analysis. Applied and Environmental Microbiology, 58(11), 3522–3526.PubMedGoogle Scholar
  2. Chiou, C. S., & Jones, A. L. (1991). The analysis of plasmid-mediated streptomycin resistance in Erwinia amylovora. Phytopathology, 81(7), 710–714.CrossRefGoogle Scholar
  3. Chiou, C. S., & Jones, A. L. (1993). Nucleotide-sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gramnegative bacteria. Journal of Bacteriology, 175(3), 732–740.PubMedGoogle Scholar
  4. Chiou, C. S., & Jones, A. L. (1995a). Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology, 85(3), 324–328.CrossRefGoogle Scholar
  5. Chiou, C. S., & Jones, A. L. (1995b). Expression and identification of the strA-strB gene pair from streptomycin-resistant Erwinia amylovora. Gene, 152(1), 47–51.PubMedCrossRefGoogle Scholar
  6. Coyier, D. L., & Covey, R. P. (1975). Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington. Plant Disease Reporter, 59(10), 849–852.Google Scholar
  7. Espeli, O., Moulin, L., & Boccard, F. (2001). Transcription attenuation associated with bacterial repetitive extragenic BIME elements. Journal of Molecular Biology, 314(3), 375–386.PubMedCrossRefGoogle Scholar
  8. Gorris, M. T., Cambra, M., Llop, P., López, M. M., Lecomte, P., Chartier, R., et al. (1996). A sensitive and specific detection of Ewinia amylovora based on the ELISA-DASI enrichment method with monoclonal antibodies. Acta Hoticulturae, 411, 41–45.Google Scholar
  9. Ishimaru, C., & Klos, E. J. (1984). A new medium for detecting Erwinia amylovora and its use in epidemiological studies. Phytopathology, 74(11), 1342–1345.CrossRefGoogle Scholar
  10. Llop, P., Caruso, P., Cubero, J., Morente, C., & Lopez, M. M. (1999). A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant material by polymerase chain reaction. Journal of Microbiological Methods, 37(1), 23–31.PubMedCrossRefGoogle Scholar
  11. Manulis, S., Zutra, D., Kleitman, F., Dror, O., David, I., et al. (1998). Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn. Phytoparasitica, 26(3), 223–30.CrossRefGoogle Scholar
  12. McGhee, G. C., & Jones, A. L. (2000). Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Applied and Environmental Microbiology, 66(11), 4897–4907.PubMedCrossRefGoogle Scholar
  13. McGhee, G. C., Guasco, J., Bellomo, L. M., Blumer-Schuette, S. E., Shane, W. W., Irish-Brown, A., et al. (2011). Genetic analysis of streptomycin-resistant (SmR) srains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of SmR E. amylovora in Michigan. Phytopathology, 101(2), 182–191.PubMedCrossRefGoogle Scholar
  14. McManus, P. S., & Jones, A. L. (1994). Epidemiology and genetic analysis of streptomycin resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology, 84(6), 627–633.CrossRefGoogle Scholar
  15. McManus, P. S., & Jones, A. L. (1995). Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp. Phytopathology, 85(12), 1547–53.CrossRefGoogle Scholar
  16. McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use inplant agriculture. Annual Review of Phytopathology, 40, 443–465.PubMedCrossRefGoogle Scholar
  17. Moller, W., Schroth, M., & Thompson, S. V. (1981). The scenario of fire blight and streptomycin resistance. Plant Disease, 65(7), 563–568.CrossRefGoogle Scholar
  18. Obradovic, D., Balaz, J., & Kevresan, S. (2007). Detection of Erwinia amylovora by novel chromosomal polymerase chain reaction primers. Microbiology, 76(6), 748–756.CrossRefGoogle Scholar
  19. Palmer, E. L., Teviotdale, B. L., & Jones, A. L. (1997). A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora. Applied and Environmental Microbiology, 63(11), 4604–4607.PubMedGoogle Scholar
  20. Ramírez-Legarreta, M. R., Jacobo-Cuéllar, J. L., Ávila-Marioni, M. R., Gutiérrez–González, R., Parra-Quezada, R. A. (2003). Making decisions based on recommended practices for management of fire blight in apple in the mountains of Chihuahua. Technical Bulletin No. 6. Resource document in Spanish. National Institute for Forestry, Agriculture and Livestock (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias). PDF. Accessed 12 Dec 2012.
  21. Romo-Chacón, A., Berlanga-Reyes, D. I., Guerrero-Prieto, V. M., Martínez-Campos, R., Romero-Gómez, S., & Ramírez-Legarreta, M. R. (2011). Management of Erwinia amylovora with Oregano (Lippia berlandieri) essential oil and resistance study to streptomycin on apple trees cv. ‘golden delicious’. Mexican Journal of Phytopathology, 29(2), 119–132.Google Scholar
  22. Russo, N. L., Burr, T. J., Breth, D. I., & Aldwinckle, H. S. (2008). Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Disease, 92(5), 714–718.CrossRefGoogle Scholar
  23. Shaffer, W. H., & Goodman, R. N. (1985). Appearance of streptomycin-resistant Erwinia amylovora in Missouri apple orchards. Phytopathology, 75(11), 1281.Google Scholar
  24. Sholberg, P. L., Bedford, K. E., Haag, P., & Randal, P. (2001). Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Canadian Journal of Plant Pathology, 23(1), 60–67.CrossRefGoogle Scholar
  25. Sundin, G. W. (2002). Distinct recent lineages of the strA-strB streptomycin-resistance genes in clinical and environmental bacteria. Current Microbiology, 45(1), 63–69.PubMedCrossRefGoogle Scholar
  26. Thomson, S. V., Gouk, S. C., Vanneste, J. L., Hale, C. N., & Clark, R. G. (1993). The presence of streptomycin resistant isolates of Erwinia amylovora in New Zealand. Acta Horticulturae., 338, 223–230.Google Scholar
  27. Van der Zwet, T., & Keil, H. L. (1979). Fire Blight. A bacterial disease of rosaceous plants: Handbook 510. Washington, DC: United States Department of Agriculture.Google Scholar
  28. Vanneste, J. L. (2000). Page 1–6 in: Fire blight: the disease and its causative agent, Erwinia amylovora. Oxon: CAB International.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Adrian Ponce de León Door
    • 1
  • Alejandro Romo Chacón
    • 1
  • Carlos Acosta Muñiz.
    • 1
  1. 1.Centro de Investigación en Alimentación y Desarrollo A. C.ChihuahuaMexico

Personalised recommendations