Advertisement

European Journal of Plant Pathology

, Volume 137, Issue 1, pp 55–65 | Cite as

Mining of rice blast resistance gene Pi54 shows effect of single nucleotide polymorphisms on phenotypic expression of the alleles

  • A. Kumari
  • A. Das
  • B. N. Devanna
  • S. Thakur
  • P. K. Singh
  • N. K. Singh
  • T. R. Sharma
Article

Abstract

The rice blast resistance gene Pi54 (formerly Pi-k h ) isolated from indica rice line Tetep confers broad spectrum resistance to different strains of Magnaporthe oryzae in India. In this study, we performed PCR based allele mining for blast resistance gene Pi54 from six cultivated rice lines and eight wild rice species to understand its structural variation and its impact on the phenotypes. Sequence analysis indicates presence of more variation between cultivated and wild species (35–90 %) than variation found among cultivated species (1–20 %). Structural analysis of alleles showed presence of variable number of Open Reading Frames (0–2) principally having point mutations in the leucine rich repeats (LRR) regions. The Ka/Ks ratio of LRR region was >1, which shows the effect of selection pressure at this domain. The Pi54 alleles have 142 polymorphic sites with average nucleotide diversity of 0.04522. The Ka/Ks ratio of coding region ranged from 0 to >1 and Tajima’s D test showed negative as well as Darwinian selection within the alleles, which corresponded well with their phenotypic reaction to M. oryzae. The results obtained in this study shows divergent nature of Pi54 allele in wild species and land races of rice. The resistance alleles identified in this study can be used in effective management of rice blast disease through gene pyramiding.

Keywords

Alleles Blast resistance Pikh Rice blast fungus Rice Wild rice species 

Abbreviations

NBS-LRR

Nucleotide binding site-leucine rich repeat

R-gene

Resistance gene

SNPs

Single-nucleotide polymorphisms

InDel

Insertion/Deletion

ORFs

Open reading frames

SOCS

Suppressor of cytokine signalling

Notes

Acknowledgments

T R Sharma is thankful to the National Agriculture Innovative Project (Indian Council of Agricultural Research) project code C4/1701 and the Department of Biotechnology, Govt. of India (projects: BT/AB/FG-2 (PHII)/2009-3A and BT/HRD/34/04/2008) for financial assistance. BND is thankful to the Council of Scientific and Industrial Research, Govt. of India for senior research fellowship. We thank the incharge National Phytotron Facility at IARI, New Delhi for providing facilities to maintain wild species of rice.

Supplementary material

10658_2013_216_MOESM1_ESM.pptx (868 kb)
Supplementary Figures (PPTX 868 kb)
10658_2013_216_MOESM2_ESM.docx (14 kb)
Supplementary Table 1 (DOCX 14.4 kb)

References

  1. Ashfield, T., Ong, L. E., Nobuta, K., Schneider, C. M., & Innes, R. W. (2004). Convergent evolution of disease resistance gene specificity in two flowering plant families. The Plant Cell, 16, 309–354.PubMedCrossRefGoogle Scholar
  2. Aso, T., Haque, D., Barstead, R. J., Conaway, R. C., & Conaway, J. W. (1996). The inducible elongin A elongation acti-vation domain: structure, function and interaction with the elongin BC complex. The EMBO Journal, 15, 5557–5566.PubMedGoogle Scholar
  3. Bonman, J. M., Vergel, F., & Khin, M. M. (1986). Physiological specialization of Pyricularia oryzae in the Philippines. Annual Review of Phytopathology, 30, 508–520.Google Scholar
  4. Brar, D. S., & Khush, G. S. (1997). Alien introgression in rice. Plant Molecular Biology, 35, 35–47.PubMedCrossRefGoogle Scholar
  5. Caicedo, A. L., Schaal, B. A., & Kunkel, B. N. (1999). Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proceedings of National Academy of Science USA, 96, 302–306.CrossRefGoogle Scholar
  6. Das, A., Soubam, D., Singh, P. K., Thakur, S., Singh, N. K., & Sharma, T. R. (2012). A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Functional & Integrative Genomics, 12, 215–228.CrossRefGoogle Scholar
  7. Dixon, M. S., Hatzixanthis, K., Jones, D. A., Harrison, K., & Jones, J. D. G. (1988). The tomato cf-5 disease resistance gene and six orthologues show pronounced allelic variation in Leucine Rich Repeat copy number. The Plant Cell, 10, 1915–1925.Google Scholar
  8. Dodds, P. N., Lawrence, G. J., Pryor, A., & Ellis, J. G. (2000). Genetic analysis and evolution of plant disease resistance genes. In M. Dickinson & J. Beynon (Eds.), Molecular plant pathology. Annual plant reviews, vol. 4 (pp. 88–107). Sheffield: Sheffield Academic Press.Google Scholar
  9. Ellis, J. G., Lawrence, G. J., Luck, J. E., & Dodds, P. N. (1999). Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. The Plant Cell, 11, 495–506.PubMedGoogle Scholar
  10. Endo, T. A., Masuhara, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K., Matsumoto, A., Tanimura, S., Ohtsubo, M., Misawa, H., Miyazaki, T., Leonor, N., Taniguchi, T., Fujita, T., Kanakura, Y., Komiya, S., & Yoshimura, A. (1997). A new protein containing an SH2 domain that inhibits JAK kinases. Nature, 387, 921–924.PubMedCrossRefGoogle Scholar
  11. He, Y. J., McCall, C. M., Hu, J., Zeng, Y., & Xiong, Y. (2006). DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4–ROC1 ubiquitin ligases. Genes & Development, 20, 2949–2954.CrossRefGoogle Scholar
  12. Hua, Z., & Vierstra, R. D. (2011). The cullin-RING ubiquitin-protein ligases. Annual Reviews of Plant Biology, 62, 299–334.CrossRefGoogle Scholar
  13. Huang, C. L., Hwang, S. Y., Chiang, Y. C., & Lin, T. P. (2008). Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon). Genetics, 179, 1527–1538.PubMedCrossRefGoogle Scholar
  14. Jena, K. K., & Khush, G. S. (1990). Introgression of genes from Oryza officinalis Well ex Watt to cultivated rice, O. sativa L. Theoretical and Applied Genetics, 80, 737–745.CrossRefGoogle Scholar
  15. Jones, D. A., & Jones, J. D. G. (1996). The role of leucine rich repeats proteins in plant defense. Advances in Botanical Research, 24, 89–167.CrossRefGoogle Scholar
  16. Jones, D. A., & Takemoto, D. (2004). Plant innate immunity - Direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 16, 48–62.PubMedCrossRefGoogle Scholar
  17. Khush, G. S., Ling, K. C., Aquino, R. C., & Aquiero, V. M. (1977). Breeding for resistance to grassy stunt in rice. In Proc. 3rd Intern. Congr. SABRAO, (pp. 3–9). Plant Breeding Papers 1(4) Canberra, Australia.Google Scholar
  18. Khush, G. S., Bacalangco, E., & Ogawa, T. (1990). A new gene for resistance to bacterial blight from O. longistaminata. Rice Genetics Newsletter, 7, 121–122.Google Scholar
  19. Lee, S., Costanzo, S., Jia, Y., Olsen, K. M., & Caicedo, A. L. (2009). Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza Species. Genetics, 183, 1315–1325.PubMedCrossRefGoogle Scholar
  20. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.PubMedCrossRefGoogle Scholar
  21. Liu, X. Q., Wang, L., Liu, X. D., Liu, X. Q., Wang, D. B., Wang, C. T., Lin, F., & Pan, Q. H. (2010). The molecular evolution of the rice blast resistance gene Pi36. International Journal of Plant Science, 171(3), 235–243.CrossRefGoogle Scholar
  22. Matsumoto, A., Masuhara, M., Mitsui, K., Yokouchi, M., Ohtsubo, M., Misawa, H., Miyajima, A., & Yoshimura, A. (1997). CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood, 89, 3148–3154.PubMedGoogle Scholar
  23. McHale, L., Tan, X., Koehl, P., & Michelmore, R. W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology, 7, 212.PubMedCrossRefGoogle Scholar
  24. Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B. S., & Michelmore, R. W. (1998). Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. The Plant Cell, 101, 833–1846.Google Scholar
  25. Murray, H. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight DNA. Nucleic Acids Research, 8, 4321–4325.PubMedCrossRefGoogle Scholar
  26. Rai, A. K., Kumar, S. P., Gupta, S. K., Gautam, N., Singh, N. K., & Sharma, T. R. (2011). Functional complementation of rice blast resistance gene Pi-kh (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Journal of Plant Biochemistry and Biotechnology, 20, 55–65.CrossRefGoogle Scholar
  27. Sampath, S., & Rao, M. B. V. N. (1951). Interrelationship between species in the genus Oryza. Indian Journal of Genetics and Plant Breeding, 11, 14–17.Google Scholar
  28. Sharma, T. R., Chauhan, R. S., Singh, B. M., Paul, R., Sagar, V., & Rathour, R. (2002). RAPD and pathotype analyses of Magnaporthe grisea populations from the north-western Himalayan Region of India. Journal of Phytopathology, 50, 649–656.CrossRefGoogle Scholar
  29. Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., Pandit, A., Singh, A., Gaikwad, K., Upreti, H. C., & Singh, N. K. (2005a). High resolution mapping, cloning and molecular characterization of the Pi-k h gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 274, 569–578.PubMedCrossRefGoogle Scholar
  30. Sharma, T. R., Shanker, P., Singh, B. K., Jana, T. K., Madhav, M. S., Gaikwad, K., Singh, N. K., Plaha, P., & Rathour, R. (2005b). Molecular mapping of rice blast resistance gene Pi-k h in rice variety Tetep. Journal of Plant Biochemistry and Biotechnology, 14, 127–133.CrossRefGoogle Scholar
  31. Sharma, T. R., Rai, A. K., Gupta, S. K., & Singh, N. K. (2010). Broad spectrum blast resistance gene Pi-k h designated as Pi54. Journal of Plant Biochemistry and Biotechnology, 19, 87–89.CrossRefGoogle Scholar
  32. Sharma, T. R., Rai, A. K., Gupta, S. K., Vijayan, J., Devanna, B. N., & Ray, S. (2012). Rice blast management through host-plant resistance: retrospect and prospects. Agricultural Research, 1, 37–52.CrossRefGoogle Scholar
  33. Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K., & Schulze-Lefert, P. (2003). Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. The Plant Cell, 15, 732–744.PubMedCrossRefGoogle Scholar
  34. Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y., & Sasaki, T. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 19, 55–64.PubMedCrossRefGoogle Scholar
  35. Yang, M. Z., Cheng, Z. Q., Chen, S. N., Qian, J., Xu, L. L., & Huang, X. Q. (2007). A rice blast-resistance genetic resource from wild rice in Yunnan, China. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 33, 589–595.PubMedGoogle Scholar
  36. Zhang, J. G., Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J., Moritz, R. L., Cary, D., Richardson, R., Hausman, G., Kile, B. J., Kent, S. B. H., Alexander, W. S., Metcalf, D., Hilton, D. J., Nicola, N. A., & Baca, M. (1999). The conserved SOCS box motif in suppressors of cytokine binds to elonginsB and C and may couple bound proteins to proteasomal degradation. Proceedings of National Academy of Science USA, 96, 2071–2076.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • A. Kumari
    • 1
  • A. Das
    • 2
  • B. N. Devanna
    • 1
  • S. Thakur
    • 1
  • P. K. Singh
    • 1
  • N. K. Singh
    • 1
  • T. R. Sharma
    • 1
  1. 1.National Research Centre on Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Crop ImprovementIndian Institute of Pulses ResearchKanpurIndia

Personalised recommendations