Advertisement

European Journal of Plant Pathology

, Volume 136, Issue 3, pp 613–624 | Cite as

Development of two species-specific primer sets to detect the cereal cyst nematodes Heterodera avenae and Heterodera filipjevi

  • Fateh Toumi
  • Lieven Waeyenberge
  • Nicole Viaene
  • Amer Dababat
  • Julie M. Nicol
  • Francis Ogbonnaya
  • Maurice MoensEmail author
Article

Abstract

Twelve Heterodera species are of major economic significance in wheat and barley. Of these, H. avenae, H. filipjevi and H. latipons are among the most important ones, and sometimes coexist. The identification of Heterodera species using morphological characteristics is time consuming, requires specialized skill and can be imprecise, especially when they occur mixed in field populations. Molecular techniques can provide a more accurate way for nematode identification. This study reports the results of experiments targeting the mitochondrial cytochrome oxidase subunit 1 (COI) gene to develop species-specific primers that could be used for the identification of H. avenae and H. filipjevi. The COI gene of 9 Heterodera spp. and Punctodera punctata was partially sequenced and the resultant sequences were aligned to find unique sites suitable for the design of primers. The alignment showed variability between H. avenae, H. filipjevi and other Heterodera species. Two sets of species-specific primers were identified for the identification of both species and the conditions for their use in PCR were optimised. The specificity of the designed primers was checked by comparison with one population of P. punctata and populations of 14 other Heterodera species, nine populations of H. avenae and 10 populations of H. filipjevi originating from different countries. To test the sensitivity, the PCR was run with DNA extracted from five second-stage juveniles (J2) of H. avenae or five J2 of H. filipjevi mixed with DNA extracted from varying numbers of J2 of H. latipons. It was possible to detect as few as five J2 of H. avenae or H. filipjevi among 100 J2 of H. latipons. The two primers sets allow the detection of H. avenae and H. filipjevi where they occur in mixed populations with other Heterodera spp.

Keywords

Cytochrome oxidase subunit 1 Molecular identification PCR Sequence Species-specific primer 

Notes

Acknowledgements

The first author appreciates Monsanto’s Beachell-Borlaug International Scholars Program—MBBISP for the financial support for his PhD research. The authors thank the suppliers of the Heterodera samples, i.e. Drs K. Assas, L. Al-Banna, M. Christoforou, A. Dawabah, S. Hajjar, J. Hallmann, G. Hassan, M. Imren, N. Kachouri, G. Karssen, S. Kornobis, F. Mokrini, B. Niere, D. Peng, R. Riggs, R. Rivoal, D. Saglam, R. Smiley and Z. Tanha Maafi.

References

  1. Abidou, H., El-Ahmed, A., Nicol, J. M., Bolat, N., Rivoal, R., & Yahyaoui, A. (2005a). Occurrence and distribution of species of the Heterodera avenae group in Syria and Turkey. Nematologia Mediterranea, 33, 195–201.Google Scholar
  2. Abidou, H., Valette, S., Gauthier, J. P., Rivoal, R., El-Ahmed, A., & Yahyaoui, A. (2005b). Molecular polymorphism and morphometrics of species of the Heterodera avenae group in Syria and Turkey. Journal of Nematology, 37, 146–154.Google Scholar
  3. Amiri, S., Subbotin, S. A., & Moens, M. (2002). Identification of the beet cyst nematode Heterodera schachtii by PCR. European Journal of Plant Pathology, 108, 497–506.CrossRefGoogle Scholar
  4. Bekal, S., Gauthier, J. P., & Rivoal, R. (1997). Genetic diversity among a complex of cereal cyst nematodes inferred from RFLP analysis of the ribosomal internal transcribed spacer region. Genome, 40, 479–486.PubMedCrossRefGoogle Scholar
  5. Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., & Vanfleteren, J. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series, 300, 91–103.CrossRefGoogle Scholar
  6. Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., & Moens, T. (2010). Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS One, 5, e13716.PubMedCrossRefGoogle Scholar
  7. Ferris, V. R., Ferris, J. M., & Faghihi, J. (1993). Variation in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes. Fundamental and Applied Nematology, 16, 177–184.Google Scholar
  8. Fu, B., Yuan, H. X., Zhang, Y., Hou, X. S., Nian, G. L., Zhang, P., et al. (2011). Molecular characterisation of cereal cyst nematodes in winter wheat on the Huang-Huai floodplain of China using RFLP and rDNA-ITS sequence analyses. Australasian Plant Pathology, 40, 277–285.CrossRefGoogle Scholar
  9. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  10. Hebert, P. D. N., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003). Biological identifications through DNA barcodes. The Royal Society, 270, 313–322.CrossRefGoogle Scholar
  11. Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., et al. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23, 1792–1800.PubMedCrossRefGoogle Scholar
  12. Hossain, A., & Teixeira Da Silva, J. A. (2012). Phenology, growth and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress. Notulae Scientia Biologicae, 4, 97–109.Google Scholar
  13. Madani, M., Vovlas, N., Castillo, P., Subbotin, S. A., & Moens, M. (2004). Molecular characterization of cyst nematode species (Heterodera spp.) from the Mediterranean Basin using RFLPs and sequences of ITS-rDNA. Journal of Phytopathology, 152, 229–234.CrossRefGoogle Scholar
  14. Marathée, J. P., & Gomez-MacPherson, H. (2001). Future world supply and demand. In A. P. Bonjean & W. J. Angus (Eds.), The world wheat book: A history of wheat breeding (pp. 1107–1111). Paris: Lavoisier Publishing.Google Scholar
  15. McDonald, A. H., & Nicol, J. M. (2005). Nematode parasites of cereals. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant-parasitic nematodes in subtropical and tropical agriculture (pp. 131–191). Wallingford: CAB International.CrossRefGoogle Scholar
  16. Nicol, J. M., & Rivoal, R. (2008). Global knowledge and its application for the integrated control and management of nematodes on wheat. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crops nematodes (Vol. 2, pp. 243–287). Dordrecht: Springer.Google Scholar
  17. Rivoal, R., & Cook, R. (1993). Nematode pests of cereals. In K. Evans, D. L. Trudgill, & J. M. Webster (Eds.), Plant-parasitic nematodes in temperate agriculture (pp. 259–303). Wallingford: CAB International.Google Scholar
  18. Rivoal, R., Valette, S., Bekal, S., Gauthier, J. B., & Yahyaoui, A. (2003). Genetic and phenotypic diversity in the graminaceous cyst nematode complex, inferred from PCR-RFLP of ribosomal DNA and morphometric analysis. European Journal of Plant Pathology, 109, 227–241.CrossRefGoogle Scholar
  19. Romero, M. D., Andres, M. F., Lopez-Brana, I., & Delibes, A. (1996). A pathogenic and biochemical comparison of two Spanish populations of the cereal cyst nematode. Nematologia Mediterranea, 24, 235–244.Google Scholar
  20. Rumpenhorst, H. J., Elekçioğlu, I. H., Sturhan, D., Ozturk, G., & Enneli, S. (1996). The cereal cyst nematode Heterodera filipjevi (Madzhidov) in Turkey. Nematologia Mediterranea, 24, 135–138.Google Scholar
  21. Sahin, E., Nicol, J.M., Elekçioğlu, I.H., Yorgancilar, O., Yildirim, A.F., Tülek, A., Hekimhan, H., Yorgancilar, A., Kilinç, A.T., Bolat, N. & Erginbaş-Orakci, G. (2009). Frequency and diversity of cereal Nematodes on the central Anatolian Plateau of Turkey. Proceedings of the First Workshop of the International Cereal Cyst Nematode Initiative, 21–23 October 2009 (pp. 100–105). Antalya, Turkey: CIMMYT.Google Scholar
  22. Smiley, R. W., Yan, G. P., & Handoo, Z. A. (2008). First record of the cyst nematode Heterodera filipjevi on wheat in Oregon. Plant Disease, 92, 1136.CrossRefGoogle Scholar
  23. Subbotin, S. A., Mundo-Ocampo, M., & Baldwin, J. G. (2010). Description and diagnosis of Heterodera species. In D. J. Hunt & R. N. Perry (Eds.), Systematics of Cyst Nematodes (Nematoda: Heteroderinae) (pp. 35–449). Leiden: Brill.CrossRefGoogle Scholar
  24. Subbotin, S. A., Peng, D., & Moens, M. (2001). A rapid method for the identification of the soybean cyst nematode Heterodera glycines using duplex PCR. Nematology, 3, 365–371.CrossRefGoogle Scholar
  25. Subbotin, S. A., Sturhan, D., Rumpenhorst, H. J., & Moens, M. (2003). Molecular and morphological characterisation of the Heterodera avenae species complex (Tylenchida: Heteroderidae). Nematology, 5, 515–538.CrossRefGoogle Scholar
  26. Subbotin, S. A., Waeyenberge, L., & Moens, M. (2000). Identification of cyst forming nematodes of the genus Heterodera (Nematoda: Heteroderidae) based on the ribosomal DNA-RFLPs. Nematology, 2, 153–164.CrossRefGoogle Scholar
  27. Toumi, F., Hassan, G., Waeyenberge, L., Viaene, N., Dababat, A., Nicol, M. J., Ogbonnaya, C.F., Al-Assas, K., Abou Al-Fadil, T. & Moens, M. (2012). Distribution of cereal cyst nematodes (Heterodera spp.) in wheat and barley fields in northeastern regions of Syria. Proceedings of the third workshop of the international cereal cyst nematode initiative, 22–23 October 2012 (pp. 310), Adana, Turkey: CIMMYT.Google Scholar
  28. Vrain, T. C., Wakarchuk, D. A., Lévesque, A. C., & Hamilton, R. I. (1992). Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology, 15, 563–573.Google Scholar
  29. Waeyenberge, L., Viaene, N., Subbotin, S.A. & Moens, M. (2009). Molecular identification of Heterodera spp., an overview of fifteen years of research. Proceedings of the first workshop of the international cereal cyst nematode initiative, 21–23 October 2009 (pp. 109–114), Antalya, Turkey: CIMMYT.Google Scholar
  30. Wendt, K. R., Vrain, T. C., & Webster, J. M. (1993). Separation of three species of Ditylenchus and some host races of D. dipsaci by restriction fragment length polymorphism. Journal of Nematology, 25, 555–563.PubMedGoogle Scholar
  31. Yan, G. P., & Smiley, R. W. (2009). Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction-restriction fragment length polymorphism and cyst morphology. Phytopathology, 100, 216–2.CrossRefGoogle Scholar
  32. Yan, G. P., & Smiley, R. W. (2010). Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction restriction fragment length polymorphism and cyst morphology. Phytopathology, 100, 216–224.PubMedCrossRefGoogle Scholar
  33. Yavuzaslanoglu, E., Elekçioğlu, H., Nicol, J. M., Yorgancilar, O., Hodson, D., Yildirim, F. A., et al. (2012). Distribution, frequency and occurrence of cereal nematodes on the Central Anatolian Plateau in Turkey and their relationship with soil physicochemical properties. Nematology, 14, 839–854.CrossRefGoogle Scholar
  34. Zhao, J., Zhang, G., Niu, X. Y., Peng, D. L., & Kang, Z. S. (2011). Sequence and RFLP analysis of rDNA-ITS region of cereal cyst nematode on wheat from Shaanxi Province. Acta Phytopathologica Sinica, 41, 561–569.Google Scholar
  35. Zijlstra, C., Lever, A. E. M., Uenk, B. J., & Van Silfhout, C. H. (1995). Differences between ITS regions of populations of root-knot nematodes Meloidogyne hapla and M. chitwoodi. Phytopathology, 85, 1231–1237.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Fateh Toumi
    • 1
    • 2
  • Lieven Waeyenberge
    • 1
  • Nicole Viaene
    • 1
    • 3
  • Amer Dababat
    • 4
  • Julie M. Nicol
    • 4
  • Francis Ogbonnaya
    • 5
  • Maurice Moens
    • 1
    • 2
    Email author
  1. 1.Institute for Agricultural and Fisheries Research (ILVO)MerelbekeBelgium
  2. 2.Faculty of Bio-science engineeringGhent UniversityGhentBelgium
  3. 3.Faculty of SciencesGhent UniversityGhentBelgium
  4. 4.International Maize and Wheat Improvement Centre (CIMMYT)AnkaraTurkey
  5. 5.International Center for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria

Personalised recommendations