European Journal of Plant Pathology

, Volume 134, Issue 2, pp 329–343 | Cite as

The effect of winter weather conditions on the ability of pseudothecia of Leptosphaeria maculans and L. biglobosa to release ascospores

  • Adam Dawidziuk
  • Joanna Kaczmarek
  • Malgorzata Jedryczka


Leptosphaeria maculans and L. biglobosa are damaging pathogens of oilseed rape. The infection of plants occurs predominantly in early autumn or spring by spores produced in pseudothecia. The aim of this study was to investigate whether pseudothecia formed in the autumn are still viable in the spring and to what extend they are destroyed by winter frosts. The studies presented here demonstrated that winter frosts can render pseudothecia unable to release spores. Nevertheless, ascospores present in pseudothecia unable to discharge ascospores, were fully capable of germination, regardless of the incubation temperature. No significant differences were found between the studied Leptosphaeria species in their response to frost. A multiple regression equation has been elaborated to forecast the ability of pseudothecia to release ascospores, based on winter temperatures. Considerable correlation was found between the ascospore release in the autumn and the ability of pseudothecia to release ascospores over the winter period and the subsequent symptoms of stem canker before harvest. We have demonstrated that the potential and the survival of inoculum can have a large impact on the success of the pathogen. This may be particularly important in the light of forecasted climate change. Higher winter temperatures may increase the ability of pseudothecia to release ascospores and the discharge of ascospores of L. maculans and L. biglobosa into the air, and cause early plant infections. This in turn will increase the number of infected plants, the disease incidence at harvest, and reduce the yield of oilseed rape.


Ability to release ascospores Ascospore Disease incidence Frost damage Pseudothecium Stem canker 



The studies were performed with the financial support of DuPont Poland. We thank to Dr Samantha Cook from Rothamsted Research, UK for careful revision of the manuscript. Research were partially funded by project LIDER/19/113/L-1/09/NCBiR/2010.


  1. Aubertot, J. N., Pinochet, X., & Doré, T. (2004). The effects of sowing date and nitrogen availability during vegetative stages on Leptosphaeria maculans development on winter oilseed rape. Crop Protection, 23, 635–645.CrossRefGoogle Scholar
  2. Aubertot, J. N., West, J., Bousset-Vaslin, L., Salam, M., Barbetti, M., & Diggle, A. (2006). Improved resistance management for durable disease control: a case study of phoma stem canker of oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 91–106.CrossRefGoogle Scholar
  3. Brun, H., Chevre, A. M., Fitt, B. D. L., Powers, S., Besnard, A. L., Ermel, M., Huteau, V., Marquer, B., Eber, F., Renard, M., & Andrivon, D. (2010). Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist, 185, 285–299.PubMedCrossRefGoogle Scholar
  4. Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., et al. (2007). Regional climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Climate change 2007: The Physical science Basei. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York and Cambridge: Cambridge University Press.Google Scholar
  5. Dawidziuk, A. (2011). Mathematical model of life cycle and molecular detection of Leptosphaeria maculans and L. biglobosa species. Dissertation, Institute of Plant Genetics PAS, Poznan.Google Scholar
  6. Dawidziuk, A., Kasprzyk, I., Kaczmarek, J., & Jedryczka, M. (2010). Pseudothecial maturation and ascospore release of Leptosphaeria maculans and L. biglobosa in southeast Poland. Acta Agrobotanica, 63, 107–120.Google Scholar
  7. Dawidziuk, A., Kaczmarek, J., Podlesna, A., Kasprzyk, I., & Jedryczka, M. (2012). Influence of meteorological parameters on Leptosphaeria maculans and L. biglobosa spore release in central and eastern Poland. Grana (in press). doi: 10.1080/00173134.2011.649016.
  8. Doohan, F. M., Parry, D. W., Jenkinson, P., & Nicholson, P. (1998). The use of species-specific PCR-based assays to analyze Fusarium ear blight of wheat. Plant Pathology, 47, 197–205.CrossRefGoogle Scholar
  9. Evans, N., Baierl, A., Semenov, M. A., Gladders, P., & Fitt, B. D. L. (2008). Range and severity of a plant disease increased by global warming. Journal of the Royal Society Interface, 5, 525–531.CrossRefGoogle Scholar
  10. Fitt, B. D. L., Brun, H., Barbetti, M. J., & Rimmer, S. R. (2006). World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 3–15.CrossRefGoogle Scholar
  11. Gorski, T. (2002). Contemporary changes of the agroclimate in Poland [in Polish with an English abstract]. Pamietnik Pulawski, 130, 251–260.Google Scholar
  12. Gwiazdowski, R., & Korbas, M. (2005). Integrated protection against agrophages. Disease control. In C. Z. Musnicki, I. Bartkowiak-Broda, & M. Mrowczynski (Eds.), Technologia produkcji rzepaku (pp. 107–113). Warszawa: Wies Jutra.Google Scholar
  13. Hall, R. (1992). Epidemiology of blackleg of oilseed rape. Canadian Journal of Plant Pathology, 14, 46–55.CrossRefGoogle Scholar
  14. Hammond, K. E., & Lewis, B. G. (1987). The establishment of systemic infection in leaves of oilseed rape by Leptosphaeria maculans. Plant Pathology, 36, 135–147.CrossRefGoogle Scholar
  15. Hammond, K. E., Lewis, B. G., & Musa, T. M. (1985). A systematic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathology, 34, 557–565.CrossRefGoogle Scholar
  16. Huang, Y. J., Toscano-Underwood, C., Fitt, B. D. L., Todd, A. D., West, J. S., Koopmann, B., & Balesdent, M. H. (2001). Effects of temperature on germination and hyphal growth from ascospores of A-group and B-group Leptosphaeria maculans (phoma stem canker of oilseed rape). Annals of Applied Biology, 139, 193–207.CrossRefGoogle Scholar
  17. Jedryczka, M. (2007). Epidemiology and damage caused by stem canker of oilseed rape in Poland. Phytopathologia Polonica, 45, 73–75.Google Scholar
  18. Jedryczka, M., Lewartowska, E., & Frencel, I. (1994). Properties of Phoma lingam (Tode ex fr.) Desm. isolates from Poland, pathogenicity characterization. Phytopathologica Polonica, 7, 71–79.Google Scholar
  19. Jedryczka, M., Irzykowski, W., Jajor, E., & Korbas, M. (2010). Polymorphism of ten new minisatellite markers in subpopulations of phytopathogenic fungus Leptosphaeria maculans differing with metconazole treatment. Journal of Plant Protection Research, 50, 103–110.CrossRefGoogle Scholar
  20. Juroszek, P., & von Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60, 100–112.CrossRefGoogle Scholar
  21. Kaczmarek, J., Jedryczka, M., Fitt, B. D. L., Lucas, J. A., & Latunde-Dada, A. O. (2009). Analyses of air samples for ascospores of Leptosphaeria maculans and L. biglobosa with light microscopic and molecular techniques. Journal of Applied Genetics, 50, 411–419.PubMedCrossRefGoogle Scholar
  22. Kaczmarek, J., Jedryczka, M., Cools, H., Fitt, B. D. L., Lucas, J. A., & Latunde-Dada, A. O. (2012). Quantitative PCR analysis of abundance of airborne propagules of Leptosphaeria species in air samples from different regions of Poland. Aerobiologia (in press). doi: 10.1007/s10453-011-9228-9.
  23. Kutcher, H. R., Keri, M., McLaren, D. L., & Rimmer, S. R. (2007). Pathogenic variability of Leptosphaeria maculans in western Canada. Canadian Journal of Plant Pathology, 29, 388–393.CrossRefGoogle Scholar
  24. Lacey, M. E., & West, J. S. (2006). The air spora: a manual for catching and identifying airborne biological particles. Dordrecht: Springer.Google Scholar
  25. Liu, S. Y., Liu, Z., Fitt, B. D. L., Evans, N., Foster, S. J., Huang, Y. J., Latunde-Dada, A. O., & Lucas, J. A. (2006). Resistance to Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) induced by L. biglobosa and chemical defence activators in field and controlled environments. Plant Pathology, 55, 401–412.CrossRefGoogle Scholar
  26. Lô-Pelzer, E., Aubertot, J. N., Bousset, L., Pinochet, X., & Jeuffroy, M. H. (2009). Phoma stem canker (Leptosphaeria maculans/L. biglobosa) of oilseed rape (Brassica napus): is the G2 Disease Index a good indicator of the distribution of observed canker severities? European Journal of Plant Pathology, 125, 515–522.CrossRefGoogle Scholar
  27. Michalska, B., & Kalbarczyk, E. (2005). Long term changes in air temperature and precipitation on Szczecinska lowland. Electronic Journal of Polish Agriculture Universities, 8, article 17.
  28. Petrie, G. A. (1994). Effects of temperature and moisture on the number, size and septation of ascospores produced by Leptosphaeria maculans (blackleg) on rapeseed stubble. Canadian Plant Disease Survey, 74, 141–151.Google Scholar
  29. Shoemaker, R. A., & Brun, H. (2001). The telemorph of the weekly aggressive segregate of Leptosphaeria maculans. Canadian Journal of Botany, 79, 412–419.Google Scholar
  30. Sosnowski, M. R., Scott, E. S., & Ramsey, M. D. (2005). Temperature, wetness period and inoculum concentration influence infection of canola (Brassica napus) by pycnidiospores of Leptosphaeria maculans. Australasian Plant Pathology, 34, 339–344.CrossRefGoogle Scholar
  31. Toscano-Underwood, C., Huang, Y. J., Fitt, B. D. L., & Hall, A. M. (2003). Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathology, 52, 726–736.CrossRefGoogle Scholar
  32. Trail, F., Gaffoor, I., & Vogel, S. (2005). Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 42, 528–533.PubMedCrossRefGoogle Scholar
  33. Webster, J., & Weber, R. (2007). Introduction to fungi. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. West, J. S., & Fitt, B. D. L. (2005). Population dynamics and dispersal of Leptosphaeria maculans (blackleg of canola). Australian Journal of Plant Pathology, 34, 457–461.CrossRefGoogle Scholar
  35. West, J. S., Kharbanda, P. D., Barbetti, M. J., & Fitt, B. D. L. (2001). Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathology, 50, 10–27.CrossRefGoogle Scholar
  36. West, J. S., Balesdent, M. H., Rouxel, T., Narcy, J. P., Huang, Y. J., Roux, J., Steed, J. M., Fitt, B. D. L., & Schmit, J. (2002). Colonisation of winter oilseed rape tissues by A/Tox+ and B/Tox0 Leptosphaeria maculans (phoma stem canker) in France and England. Plant Pathology, 51, 311–321.CrossRefGoogle Scholar
  37. Wiszniewski, W., & Chelchowski, W. (1987). Hydrology map of Poland. Warsaw: Geological Publishing.Google Scholar
  38. Zielinski, D., & Sadowski, C. (1998). Effect of temperature on infestation and development of Verticillium dahliae Kleb. on winter oilseed rape. Integrated Control in Oilseed Crops, International Organisation for Biological Control Bulletin, 21, 41–47.Google Scholar
  39. Zmudzka, E. (2004). The climatic background of agriculture production in Poland (1951–2000). Miscellanea Geographica, 11, 127–137.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Adam Dawidziuk
    • 1
  • Joanna Kaczmarek
    • 1
  • Malgorzata Jedryczka
    • 1
  1. 1.Institute of Plant Genetics Polish Academy of SciencesPoznanPoland

Personalised recommendations