European Journal of Plant Pathology

, Volume 134, Issue 1, pp 191–203 | Cite as

Molecular characterization of Pseudomonas syringae isolates from fruit trees and raspberry in Serbia

  • Žarko Ivanović
  • Slaviša Stanković
  • Svetlana Živković
  • Veljko Gavrilović
  • Milan Kojić
  • Djordje Fira
Article

Abstract

Infection of fruit trees by Pseudomonas syringae is a potentially serious problem that may limit the establishment and sustained productivity of pome and stone fruit orchards in Serbia. To estimate possible diversity of Pseudomonas syringae fruit trees strains, we collected a set of strains in several areas of Serbia. The samples were taken from infected orchards with raspberry, plum, cherry, sour cherry, peach, pear and apple trees. Genetic diversity of P. syringae strains isolated from fruit trees was determined by using SpeI macrorestriction analysis of genomic DNAs by pulsed-field gel electrophoresis (PFGE) and REP-PCR. Molecular analysis showed that most of isolates had unique profiles, with the exception of isolates from plum and cherry that displayed profiles identical to each other and similar to P. syringae pv. morsprunorum. The study presented here clearly demonstrates the discriminative power of molecular techniques in enabling a detailed analysis of the genetic variations between strains of P. syringae from different pome and stone fruit hosts in Serbia.

Keywords

Pseudomonas syringae Fruit trees Characterization 

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (Eds.). (1992). Current protocols in molecular biology, Vol. I. New York: Greene Publishing Associates and Wiley-Interscience.Google Scholar
  2. Balaz, J., & Arsenijevic, M. (1989). Further investigations on the Pseudomonas syringae pathovar as a pathogen of sour cherry fruits in Yugoslavia. (Paper presented at the 7th Int. Conf. Plant Path. Bact., Budapest, Hungary, pp. 515–520.Google Scholar
  3. Braun-Kiewnick, A., & Sands, D. C. (2001). Pseudomonas. In N. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 84–117). St. Paul: APS PRESS, American Phytopathological Society.Google Scholar
  4. Burkowicz, A., & Rudolph, K. (1994). Evaluation of pathogenicity and of cultural and biochemical tests for identification of Pseudomonas syringae pathovars syringae, morsprunorum, and persicae from fruit trees. Journal of Phytopathology, 141, 59–76.CrossRefGoogle Scholar
  5. Clerc, A., Manceau, C., & Nesme, X. (1998). Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Applied and Environmental Microbiology, 64, 1180–1187.PubMedGoogle Scholar
  6. de Bruijn, F. J. (1992). Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology, 58, 2180–2187.PubMedGoogle Scholar
  7. Felsenstein, J. (1993). Phylogeny inference package version 3.5 c. Seattle, Wash: Department of Genetics, University of Washington.Google Scholar
  8. Ferrente, P., & Scotrichini, M. (2010). Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensisi) in central Italy. Plant Pathology, 59, 954–962.CrossRefGoogle Scholar
  9. Gonzalez, A. J., Landeras, E., & Carmen, M. M. (2000). Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Applied and Environmental Microbiology, 66, 850–854.PubMedCrossRefGoogle Scholar
  10. Grothues, D., & Rudolph, K. (1991). Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiology Letters, 79, 83–88.CrossRefGoogle Scholar
  11. Guven, K., Jones, B., Momol, M. T., & Dickstein, E. R. (2004). Phenotypic and genetic diversity among Pseudomonas syringae pv. phaseolicola. Journal of Phytopathology, 152, 658–666.CrossRefGoogle Scholar
  12. Hugh, R., & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology, 66, 24–26.PubMedGoogle Scholar
  13. Ivanovic, Z., Zivkovic, S., Starovic, M., Josic, D., Stankovic, S., & Gavrilovic, V. (2009). Diversity among Pseudomonas syringae strains originating from fruit trees in Serbia. Archives of Biological Sciences, 61(4), 863–870.CrossRefGoogle Scholar
  14. Klement, Z. (1990). Inoculation plant tissues. Cancer and dieback disease. In Z. Klement, K. Rudolph, & D. Sands (Eds.), Methods in phytobacteriology (pp. 105–106). Budapest: Akademiai Kiado.Google Scholar
  15. Kojic, M., Strahinic, I., Fira, D., Jovcic, B., & Topisirovic, L. (2006). Plasmid content and bacteriocin production by five strains of Lactococcus lactis isolated from semi-hard homemade cheese. Canadian Journal of Microbiology, 52, 1110–1120.PubMedCrossRefGoogle Scholar
  16. Latorre, B. A., & Jones, A. L. (1979). Pseudomonas morsprunorum, the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology, 69, 335–339.CrossRefGoogle Scholar
  17. Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis for bacterial disease of plants. Oxford, London, Edinburgh: British Society for Plant Pathology, Blackwell Scientific Publications.Google Scholar
  18. Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.PubMedGoogle Scholar
  19. Louws, F. J., Bell, J., Medina-Mora, C. M., Smart, C. D., Opgenorth, D., Ishimaru, C. A., Hausbeck, M. K., de Bruijn, F. J., & Fulbright, D. W. (1998). rep-PCR–mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology, 88, 862–868.PubMedCrossRefGoogle Scholar
  20. Lupski, J. R., & Weinstock, G. M. (1992). Short, interspersed repetitive DNA sequences in prokaryotic genomes. Journal of Bacteriology, 174, 4525–4529.PubMedGoogle Scholar
  21. Manceau, C., & Brin, C. (2003). Pathovars of Pseudomonas syringae are structured in genetic populations allowing the selection of specific markers for their detection in plant samples. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, et al. (Eds.), Pseudomonas syringae and related pathogens (pp. 503–512). Dordrecht: Kluwer Academic Publishers.Google Scholar
  22. Manceau, C., & Horvais, A. (1997). Assessment of genetic diversity among strains of Pseudomonas syringae by PCR restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Applied and Environmental Microbiology, 63, 498–505.PubMedGoogle Scholar
  23. Mo, Y. Y., & Gross, D. C. (1991). Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. Journal of Bacteriology, 173, 5784–5792.PubMedGoogle Scholar
  24. Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 1619–1626.CrossRefGoogle Scholar
  25. Obradovic, A., Gavrilovic, V., Ivanovic, M., & Gasic, K. (2008). Pseudomonas blight of raspberry in Serbia. In: M. Fatmi, A. Collmer, N.S. Iacobellis, J.W. Mansfield, J. Murillo, N.W. Schaad, M. Ullrich (eds.) Pseudomonas syringae pathovars and related pathogens—identification, epidemiology and genomics (pp. 413–417). Springer Science + Business Media B. V.Google Scholar
  26. Paterson, J. M., & Jones, A. L. (1991). Detection of Pseudomonas syringae pv. morsprunorum on cherries in Michigan with a DNA hybridization probe. Plant Disease, 75, 893–896.CrossRefGoogle Scholar
  27. Renick, L. J., Cogal, A. G., & Sundin, G. W. (2008). Phenotypic and genetic analysis of epiphytic pseudomonas syringae populations from sweet cherry in Michigan. Plant Disease, 92, 372–378.CrossRefGoogle Scholar
  28. Rico, A., & Preston, G. M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21, 269–282.PubMedCrossRefGoogle Scholar
  29. Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.PubMedCrossRefGoogle Scholar
  30. Scholz, B. K., Jakobek, J. L., & Lindgren, P. B. (1994). Restriction fragment length polymorphism evidence for genetic homology within a pathovar of Pseudomonas syringae. Applied and Environmental Microbiology, 60, 1093–1100.PubMedGoogle Scholar
  31. Sorensen, K. N., Kim, K.-H., & Takemoto, J. Y. (1998). PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Applied and Environmental Microbiology, 61, 226–230.Google Scholar
  32. Suslow, T. V., Schroth, M. N., & Isaka, M. (1982). Application of rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917–918.CrossRefGoogle Scholar
  33. Vicente, J. G., & Roberts, S. J. (2007). Discrimination of Pseudomonas syringae isolates from sweet and wild cherry using rep-PCR. European Journal of Plant Pathology, 117, 383–392.CrossRefGoogle Scholar
  34. Vicente, J. G., Alves, J. P., Russell, K., & Roberts, S. J. (2004). Identification and discrimination of pseudomonas syringae isolates from wild cherry in England. European Journal of Plant Pathology, 110, 337–351.CrossRefGoogle Scholar
  35. Zhang, Y., & Geider, K. (1997). Differentiation of Erwinia amylovora strains by pulsed-field gel electrophoresis. Applied and Environmental Microbiology, 63, 4421–4426.PubMedGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Žarko Ivanović
    • 1
  • Slaviša Stanković
    • 2
  • Svetlana Živković
    • 1
  • Veljko Gavrilović
    • 1
  • Milan Kojić
    • 3
  • Djordje Fira
    • 2
    • 3
  1. 1.Institute for Plant Protection and the EnvironmentBelgradeSerbia
  2. 2.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  3. 3.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations