European Journal of Plant Pathology

, Volume 133, Issue 1, pp 33–73 | Cite as

Control of foliar diseases in barley: towards an integrated approach

  • Dale R. Walters
  • Anna Avrova
  • Ian J. Bingham
  • Fiona J. Burnett
  • James Fountaine
  • Neil D. Havis
  • Stephen P. Hoad
  • Gareth Hughes
  • Mark Looseley
  • Simon J. P. Oxley
  • Alan Renwick
  • Cairistiona F. E. Topp
  • Adrian C. Newton


Barley is one of the world’s most important crops providing food and related products for millions of people. Diseases continue to pose a serious threat to barley production, despite the use of fungicides and resistant varieties, highlighting the impact of fungicide resistance and the breakdown of host plant resistance on the efficacy of control measures. This paper reviews progress towards an integrated approach for disease management in barley in which new methods may be combined with existing measures to improve the efficacy of control in the long-term. Advances have been made in genetic mapping of resistance (R) genes and in identifying novel sources of genes in wild barley populations and land races. Marker assisted selection techniques are being used to pyramid R genes to increase the durability of resistance. Elicitors to induce host resistance used in combination with fungicides can provide effective disease control in the field and could delay the evolution of fungicide insensitivity. Traits that may contribute to disease tolerance and escape have been identified and the extent of genetic variation within barley germplasm is being determined. Tools are being developed to integrate the above methods via an assessment of the risk of economic injury occurring from disease to guide decisions on the requirement for fungicide treatment. Barriers exist to the adoption of integrated management approaches from growers and end-users further down the supply chain (e.g. acceptance of variety mixtures) and policy incentives from government may be required for it to be taken up in practice.


Barley Hordeum vulgare Disease control Integrated management Fungicides Elicitors Tolerance Resistance Heterogeneity 



Some of the work at SAC and JHI described in this paper was conducted as part of the Scottish Government-funded 'Sustainable Agriculture - Plants' programme on barley pathology (WP1.4).


  1. Al-Sadi, A. M., & Deadman, M. L. (2010). Influence of Seed-borne Cochliobolus sativus (Anamorph Bipolaris sorokiniana) on Crown Rot and Root Rot of Barley and Wheat. Journal of Phytopthology, 158, 683–690.CrossRefGoogle Scholar
  2. Angus, J. F., Jones, R., & Wilson, J. H. (1972). A comparison of barley cultivars with different leaf inclinations. Australian Journal of Agricultural Research, 23, 945–957.CrossRefGoogle Scholar
  3. Arabi, M. I. E., Al-Shehadah, E., & Jawhar, M. (2009). Viability of Pyrenophora graminae cultures after sunlight exposure under field conditions. Journal of Plant Pathology, 91, 299–303.Google Scholar
  4. Arraiano, L. S., Balaam, N., Fenwick, P. M., Chapman, C., Feuerhelm, D., Howell, P., Smith, S. J., Widdowson, J. P., & Brown, J. K. M. (2009). Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat. Plant Pathology, 58, 910–922.CrossRefGoogle Scholar
  5. Asby, C., & Renwick, A. (2000). Economics of Cereal Production. MAFF Special Studies in Agricultural Economics no. 48. UK: University of Cambridge.Google Scholar
  6. Ashby, D., & Smith, A. F. M. (2000). Evidence-based medicine as Bayesian decision-making. Statistics in Medicine, 19, 3291–3305.PubMedCrossRefGoogle Scholar
  7. Atkins, S.D., Fitt, B.D.L., Fraaije, B., Harvey, S., Lynott, J. &, Newton, A.C. (2010). The epidemiological importance of asymptomatic infection of winter barley by Rhynchosporium secalis and its consequences for crop protection and breeding. Proceedings Crop Protection in Northern Britain, Dundee, February 2010, 81-86.Google Scholar
  8. Attari, H. E., Hayes, P. M., Rebai, A., Barrault, G., champ-Guillaume, G., & Sarrafi, A. (1998). Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theoretical and Applied Genetics, 96, 95–100.CrossRefGoogle Scholar
  9. Aust, H. J., & von Hoyningen-Heuene, J. (1986). Microclimate in relation to epidemics of powdery mildew. Annual Review of Phytopathology, 24, 491–510.CrossRefGoogle Scholar
  10. Backes, G., Graner, A., Foroughi-Wehr, B., Fischbeck, G., Wenzel, G., & Jahoor, A. (1995). Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 90, 294–302.CrossRefGoogle Scholar
  11. Baker, B., Zambryski, P., Staskawicz, B., & Dinesh-Kumar, S. P. (1997). Signalling in plant-microbe interactions. Science, 276, 726–733.PubMedCrossRefGoogle Scholar
  12. Bastiaans, L. (1991). The ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81, 611–615.CrossRefGoogle Scholar
  13. Bateman, G. L., Gutteridge, R. J., Gherbawy, Y., Thomsett, M. A., & Nicholson, P. (2007). Infection of stem bases and grains of winter wheat by Fusarium culmorum and F. graminearum and effects of tillage method and maize stalk residues. Plant Pathology, 56, 604–615.CrossRefGoogle Scholar
  14. Baulcombe, D. (2011). Reaping the benefits: science and the sustainable intensification of global agriculture. London: RS Policy document 11/09, The Royal Society.Google Scholar
  15. Belkhadir, Y., Subramaniam, R., & Dangl, J. L. (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology, 7, 391–399.PubMedCrossRefGoogle Scholar
  16. Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J., & Staskawicz, B. J. (1994). RPS 2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 265, 1856–1860.PubMedCrossRefGoogle Scholar
  17. Bingham, .IJ. (2010). Variation in the response of spring barley genotypes to leaf damage. pp 533-534 Agro 2010. Proceedings of the XI European Society for Agronomy Congress, Montpellier, France, 29 Aug-3 Sept 2010. Google Scholar
  18. Bingham, I. J., Blake, J., Foulkes, M. J., & Spink, J. (2007). Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source-sink balance. Field Crops Research, 101, 198–211.CrossRefGoogle Scholar
  19. Bingham, I.J., Hoad, S.P., Newton, A.C. & Thomas, W.T.B. (2008). Avoidance and tolerance of foliar disease in barley: opportunities for improvement. Proceedings Crop Protection in Northern Britain, Dundee, February 2008, 139-144.Google Scholar
  20. Bingham, I. J., & Newton, A. C. (2009). Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation. In D. Walters (Ed.), Disease Control in Crops: biological and environmentally friendly approaches (pp. 142–161). Oxford: Wiley-Blackwell.Google Scholar
  21. Bingham, I. J., & Topp, C. F. E. (2009). Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barley. Plant Pathology, 58, 1010–1020.CrossRefGoogle Scholar
  22. Bingham, I. J., Walters, D. R., Foulkes, M. J., & Paveley, N. D. (2009). Crop traits and the tolerance of wheat and barley to foliar disease. Annals of Applied Biology, 154, 159–173.CrossRefGoogle Scholar
  23. Bingham, I., Young, C., Smith, J., Spink, J & Paveley N. (2010). Targeting winter barley disease management. pp 1-156. HGCA Project Report no. 470.Google Scholar
  24. Binns, M., Nyrop, J. P., & van der Werf, W. (2000). Sampling and Monitoring for Crop Protection Decision Making. London: CAB International.Google Scholar
  25. Bjønstad, Å., Patil, V., Tekauz, A., et al. (2002). Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines. I. Markers and differential isolates. Phytopathology, 92, 710–720.CrossRefGoogle Scholar
  26. Borovkova, I. G., Steffenson, B. J., Jin, Y., Kilian, A., Kleinhofs, A., & Blake, T. K. (1997). Identification and mapping of a leaf rust resistance gene in barley line Q21861. Genome, 40, 236–241.PubMedCrossRefGoogle Scholar
  27. Borovkova, I. G., Jin, Y., & Steffenson, B. J. (1998). Chromosomal location and genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology, 88, 76–80.PubMedCrossRefGoogle Scholar
  28. Bowen, S., & Zwi, A. B. (2005). Pathways to “evidence-informed” policy and practice: a framework for action. PLoS Medicine, 2, e166.PubMedCrossRefGoogle Scholar
  29. Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance in crop protection, how can it be managed. FRAC Monograph 1, 2 nd edition (p. 56). Brussels, Belgium: FRAC.Google Scholar
  30. Brown, A. H. D., Garvin, D. F., Burdon, J. J., Abbott, D. C., & Read, B. J. (1996). The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theoretical and Applied Genetics, 93, 361–366.CrossRefGoogle Scholar
  31. Brown, J. K. M. (2002). Yield penalties of disease resistance in crops. Current Opinion in Plant Biology, 5, 339–344.PubMedCrossRefGoogle Scholar
  32. Brown, J. S. (1985). Pathogenic variation among isolates of Rhynchosporium secalis from cultivated barley growing in Victoria, Australia. Euphytica, 34, 129–133.CrossRefGoogle Scholar
  33. Brown, W. M., Hill, J. P., & Velasco, V. R. (2001). Barley yellow rust in North America. Annual Review of Phytopathology, 39, 367–384.PubMedCrossRefGoogle Scholar
  34. Browning, J. A., & Fey, K. J. (1969). Multiline cultivars as a means of disease control. Annual Review of Phytopathology, 14, 355–382.CrossRefGoogle Scholar
  35. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., & Kleinhofs, A. (2002). The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 99, 9328–9333.PubMedCrossRefGoogle Scholar
  36. Brunner, S., Keller, B., & Feuillet, C. (2000). Molecular mappingof the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 101, 783–788.CrossRefGoogle Scholar
  37. Bulgarelli, D., Biselli, C., Collins, N. C., Consonni, G., Stanca, A. M., Schulze-Lefert, P., & Vale, G. (2010). The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death. PLoS One, 5, e12599. doi: 10.1371/journal.pone.0012599.PubMedCrossRefGoogle Scholar
  38. Burnett, F. (2011). FRAG – UK (Fungicide Resistance Action Group – UK) – a review of the context, work and aims of this UK resistance action group. UK: FRAG.Google Scholar
  39. Burnett, F., & Hughes, G. (2004). The development of a risk assessment method to identify wheat crops at risk from eyespot. Project Report No. 347. London: HGCA.Google Scholar
  40. Carmona, M., Barreto, D., Moschini, R., & Reis, E. (2008). Epidemiology and control of seed borne Drechslera teres on barley. Cereal Research Communications, 36, 637–645.CrossRefGoogle Scholar
  41. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security, an overview. Plant Pathology, 60, 2–14.CrossRefGoogle Scholar
  42. Chandler, D., Grant, W., Greaves, J., Prince, G., & Tatchell, M. (2007). Biopesticides: The Regulatory Challenge. Wellesbourne, Warwickshire: Warwick HRI.Google Scholar
  43. Chełkowski, J., Tyrka, M., & Sobkiewicz, A. (2003). Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. Journal of Applied Genetics, 44, 291–309.PubMedGoogle Scholar
  44. Chen, F. Q., Prehn, D., Hayes, P. M., Mulrooney, D., Corey, A., & Vivar, H. (1994). Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theoretical and Applied Genetics, 88, 215–219.Google Scholar
  45. Chin, K. M., & Wolfe, M. S. (1984). The spread of Erysiphe graminis f. sp. hordei in mixtures of barley varieties. Plant Pathology, 33, 89–100.CrossRefGoogle Scholar
  46. Clifford, B. C. (1985). Barley leaf rust. In A. P. Roelfs & W. R. Bushnell (Eds.), The Cereal Rusts. Vol. II. Diseases, Distribution, Epidemiology, and Control (pp. 173–205). Orlando, FL: Academic.Google Scholar
  47. Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J. T., Wanamaker, S., Bozdag, S., Roose, M. L., Moscou, M. J., Chao, S., Varshney, R. K., Szűcs, P., Sato, K., Hayes, P. M., Matthews, D. E., Kleinhofs, A., Muehlbauer, G. J., DeYoung, J., Marshall, D. F., Madishetty, K., Fenton, R. D., Condamine, P., Graner, A., & Waugh, R. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582. doi: 10.1186/1471-2164-10-582.PubMedCrossRefGoogle Scholar
  48. Cockerell, V., Rennie, W. J., & Jacks, M. (1995). Incidence and control of barley leaf stripe (Pyrenophora graminae) in Scottish barley during the period 1987-1992. Plant Pathology, 44, 655–661.CrossRefGoogle Scholar
  49. Collett, D. (2003). Modelling Binary Data (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  50. Conrath, U. (2009). Priming of induced plant defence responses. Advances in Botanical Research, 51, 361–395.CrossRefGoogle Scholar
  51. Cooke, L. R., Locke, T., Lockley, K. D., Phillips, A., Sadiq, M. D. S., Coll, R., Black, L., Taggart, P. J., & Mercer, P. C. (2004). The effect of fungicide programmes based on epoxiconazole on the control and DMI sensitivity of Rhynchosporium secalis in winter barley. Crop Protection, 23, 393–406.CrossRefGoogle Scholar
  52. Cowley, T., & Walters, D. (2005). Local and systemic effects of oxylipins on powdery mildew infection in barley. Pest Management Science, 61, 572–576.PubMedCrossRefGoogle Scholar
  53. Crous, P. W., Kang, J. C., & Braun, U. (2001). A phylogentic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequences and morphology. Mycologia, 93, 1081–1101.CrossRefGoogle Scholar
  54. Czembor, J. H., & Johnston, M. R. (2008). Resistance to powdery mildew in selections from Tunisian landraces of barley. Plant Breeding, 118, 503–509.CrossRefGoogle Scholar
  55. Davis, M. & Jackson, L.F. (2005). UC IPM Pest Management Guidelines: Small Grains UC NR Publication 3466 Diseases. Statewide IPM program, Agriculture and Natural Resources, University of California.Google Scholar
  56. Day, K. L. (1984). The effect of cultivar mixtures on foliar disease and yield in barley and wheat. MSc thesis, University of Newcastle Upon Tyne.Google Scholar
  57. Defra. (2010), Consultation on the implementation of EU pesticide legislation; summary and government response.
  58. De Schutter, O. (2011). Report submitted by the Special Rapporteur on the on the Right to Food. United Nations Human Rights Council 16 th Session Agenda Item 3. UN, New York.Google Scholar
  59. Dietrich, R., Ploss, K., & Heil, M. (2005). Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell & Environment, 28, 211–222.CrossRefGoogle Scholar
  60. Drost, D., Long, G., Wilson, D., Miller, B., & Campbell, W. (1996). Barriers to adopting sustainable agricultural practices. Journal of Extension, Volume 34, 1-7 ( Scholar
  61. Drummond, H. (2001). The Art of Decision Making. Chichester: John Wiley & Sons.Google Scholar
  62. Eibel, P., Wolf, G. A., & Koch, E. (2005). Development and evaluation of an enzyme-linked immunosorbent assay (ELISA) for the detection of loose smut of barley (Ustilago nuda). European Journal of Plant Pathology, 111, 113–124.CrossRefGoogle Scholar
  63. ENDURE. (2010). Integrated Pest Management in Europe. INRA, 132 pp.Google Scholar
  64. Essah, S. Y. C., & Stoskopf, N. C. (2002). Mixture performance of phenotypicaly contrasting barley cultivars. Canadian Journal of Plant Science, 82, 1–6.CrossRefGoogle Scholar
  65. FAOSTAT. (2011). Global barley production in 2009. Food and Agriculture Organisation, Statistics Division. Data accessed on 3 June 2011.
  66. Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of Agricultural Innovations in Developing Countries: A Survey. Economic Development and Cultural Change, 33, 255–298.CrossRefGoogle Scholar
  67. Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C., & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie: Plant Genetics and Breeding, 20, 813–837.Google Scholar
  68. Fitt, B. D. L., Creighton, N. F., Lacey, M. E., & McCartney, H. A. (1986). Effects of rainfall intensity and duration on dispersal of Rhynchosporium secalis conidia from infected barley leaves. Transactions of the British Mycological Society, 86, 611–618.CrossRefGoogle Scholar
  69. Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.CrossRefGoogle Scholar
  70. Foulkes, M. J., Paveley, N. D., Worland, A., Welham, S. J., Thomas, J., & Snape, J. W. (2006). Major genetic changes in wheat with potential to affect disease tolerance. Phytopathology, 96, 680–688.PubMedCrossRefGoogle Scholar
  71. Fountaine, J. M., & Fraaije, B. A. (2009). Development of QoI resistant alleles in populations of Ramularia collo-cygni. Aspects of Applied Biology, 92, 123–126.Google Scholar
  72. Fountaine, J.M. (2011). Screening for Qol resistance in UK populations of Rhynchosporium secalis, HGCA project report.Google Scholar
  73. Fountaine, J. M., Shaw, M. W., Napier, B., Ward, E., & Fraaije, B. A. (2007). Application of real-time and multiplex polymerase chain reaction assays to study leaf blotch epidemics in barley. Phytopathology, 97, 297–303.PubMedCrossRefGoogle Scholar
  74. Fountaine, J. M., Shaw, M. W., Ward, E., & Fraaije, B. A. (2010). The role of seeds and airborne inoculum in the initiation of leaf blotch (Rhynchosporium secalis) epidemics in winter barley. Plant Pathology, 59, 330–337.CrossRefGoogle Scholar
  75. Fraaije, B. A., Cools, H. J., Fountaine, J. M., Lovell, D. J., Motteram, J., West, J. S., & Lucas, J. A. (2005). QoI resistant isolates of Mycosphaerella graminicola and the role of ascospores in further spread of resistant alleles in field populations. Phytopathology, 95, 933–941.PubMedCrossRefGoogle Scholar
  76. Fungicide Resistance Action Group – UK. (2010). Fungicide resistance in cereals. FRAG – UK,
  77. Gaunt, R. E. (1995). The relationship between plant disease severity and yield. Annual Review of Phytopathology, 33, 119–144.PubMedCrossRefGoogle Scholar
  78. Goodwin, S. B., Allard, R. W., & Webster, R. K. (1990). A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology, 80, 1330–1336.CrossRefGoogle Scholar
  79. Govindasamy, R., Italia, J., & Adelaja, A. (2001). Willingness to Pay a premium for Integrated Pest Management Produce: A Logistic Approach. Agricultural and Resource Economics Review, 30(2), 151–159.Google Scholar
  80. Grando, S., & Macpherson, H.G. (2005). Food barley: importance, uses, and local knowledge. ICARDA, Aleppo: Syria.
  81. Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Inner, R. W., & Dangl, J. L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269, 843–846.PubMedCrossRefGoogle Scholar
  82. Grasso, V., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Characterization of the cytochrome b gene fragment of puccinia species responsible for the binding site of QoI fungicides. Pesticide Biochemistry and Physiology, 84, 72–82.CrossRefGoogle Scholar
  83. Grossmann, K., Kwiatkowski, J., & Casper, G. (1999). Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin kresoxim-methyl in wheat (Triticum aestivum). Journal of Plant Physiology, 154, 805–808.CrossRefGoogle Scholar
  84. Gustafson, D. H., Cats-Baril, W. L., & Alemi, F. (1992). Systems to Support Health Policy Analysis: Theory, Models, and Uses. Ann Arbor, MI: Health Administration Press.Google Scholar
  85. Habgood, R. M. (1971). The transmission of Rhynchosporium secalis by infected barley seed. Plant Pathology, 20, 80–81.CrossRefGoogle Scholar
  86. Habgood, R. M. (1973). Variation in Rhynchosporium secalis. Transactions of the British Mycological Society, 61, 41–47.CrossRefGoogle Scholar
  87. Habgood, R. M., & Hayes, J. D. (1971). The inheritance of resistance to Rhynchosporium secalis in barley. Heredity, 27, 25–37.CrossRefGoogle Scholar
  88. Halterman, D., Zhou, F., Wei, F., Wise, R. P., & Schulze-Lefert, P. (2001). The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specifity to Blumeria graminis f. sp. hordei in barley and wheat. The Plant Journal, 25, 335–348.PubMedCrossRefGoogle Scholar
  89. Halterman, D. A., & Wise, R. P. (2004). A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. The Plant Journal, 38, 215–226.PubMedCrossRefGoogle Scholar
  90. Hammerschmidt, R. (2007). Introduction: definitions and some history. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (pp. 1–8). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  91. Hanemann, A., Schweizer, G. F., Cossu, R., Wicker, T., & Roder, M. S. (2009). Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theoretical and Applied Genetics, 119, 1507–1522.PubMedCrossRefGoogle Scholar
  92. Hardwick, N., Slough, J. E., & Gladders, P. (2002). Winter Barley: a survey of disease 2002. CSL, ADAS, UK: DEFRA.Google Scholar
  93. Hau, B., & De Vallavieille-Pope, C. (2006). Wind dispersed diseases. In B. M. Cooke, G. Jones, & B. Kaye (Eds.), The Epidemiology of Plant Diseases (2nd ed., pp. 387–416). New York: Springer.Google Scholar
  94. Havis, N. D., Piper, S. R., Oxley, S. J. P., & Langrell, S. R. H. (2004). Development of a PCR based identification and detection assay for Ramularia collo-cygni direct from barley leaf tissue. Meeting the Challenges of Barley Blights. A.H. Yahyaoui, L., Brader, A., Tekauz, H., Wallwork, & B. Steffenson (Eds), Proceedings of the Second International Workshop on Barley Leaf Blights, (ICARDA), Aleppo, Syria. April, 2002, 343–350.Google Scholar
  95. Havis, N. D., Oxley, S. J. P., Piper, S. R., & Langrell, S. R. H. (2006). Rapid nested PCR-based detection of Ramularia collo-cygni direct from barley. FEMS Microbiology Letters, 256, 217–223.PubMedCrossRefGoogle Scholar
  96. Havis, N. D., Pastok, M., Pyzalski, S., & Oxley, S. J. P. (2006). Investigating the life cycle of Ramularia collo-cygni. Proceedings Crop Protection in Northern Britain, 2006, 219–223.Google Scholar
  97. Havis, N. D., Nyman, M., & Oxley, S. J. P. (2010). Potential of seed treatments to control Ramularia collo-cygni in barley. Proceedings Crop Protection Conference, 2010, 97–102.Google Scholar
  98. Heil, M., & Walters, D. R. (2009). Ecological consequences of plant defence signalling. Advances in Botanical Research, 51, 667–716.CrossRefGoogle Scholar
  99. Hollomon, D. W. (1984). A laboratory assay to determine the sensitivity of Rhynchosporium secalis to the fungicide triadimenol. Plant Pathology, 33, 65–70.CrossRefGoogle Scholar
  100. Hollomon, D. W., & Brent, K. J. (2009). Combating plant diseases – the Darwin connection. Pest Management Science, 65, 1156–1163.PubMedCrossRefGoogle Scholar
  101. Home-Grown Cereals Authority (HGCA). (2004). Determining eyespot risk in winter wheat. Topic Sheet No. 80, HGCA, London.Google Scholar
  102. Home-Grown Cereals Authority (HGCA). (2011). The HGCA barley disease management guide. Stoneleigh Park, Warwickshire, UK: HGCA.Google Scholar
  103. Hjortshøj, R. L., Stukenbrock, E. H., Ravhshøj, A. R., Nyman, M., Havis, N., Backes, G., Orabi, G., Pinnschmidt, H., & Stougaard, J. (2009). Genetic diversity in population of Ramularia collo-cygni assessed by AFLP fingerprint. Aspects of Applied Biology, 92, 97–101.Google Scholar
  104. Houston, B. R., & Ashworth, L. J. (1957). Newly determined races of the barley scald fungus in California. Phytopathology, 47, 525.Google Scholar
  105. Hughes, D. J., West, J. S., Atkins, S. D., Gladders, P., Jeger, M. J., & Fitt, B. D. L. (2011). Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production. Pest Management Science, 67, 1082–1092.Google Scholar
  106. Inglese, S. J., & Paul, N. D. (2006). Tolerance of Senecio vulgaris to infection and disease caused by native and alien rust fungi. Phytopathology, 96, 718–726.PubMedCrossRefGoogle Scholar
  107. Ivandic, V., Walther, U., & Graner, A. (1998). Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theoretical and Applied Genetics, 97, 1235–1239.CrossRefGoogle Scholar
  108. Jackson, L. F., & Webster, R. K. (1976). Seed and grasses as possible sources of Rhynchosporium secalis for barley in California. Plant Disease Reporter, 60, 233–236.Google Scholar
  109. Jeger, M. J. (2000). Bottlenecks in IPM. Crop Protection, 19, 787–792.CrossRefGoogle Scholar
  110. Jones, D. R. (1990). Sensitivity of Rhynchosporium secalis to DMI fungicides. Proceedings Brighton Crop Protection Conference, 9c-6, 1135–1140.Google Scholar
  111. Jones, E.R.L., & Newton, A.C. (2001). Rhynchosporium on barley. UK cereal pathogen virulence survey 2000. Annual report. 77-86.Google Scholar
  112. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.PubMedCrossRefGoogle Scholar
  113. Jorgensen, H. J. L., Neergard, E. D., & Smedegard-Petersen, V. (1993). Histological examination of the interaction between Rhynchosporium secalis and susceptible and resistant cultivars of barley. Physiological and Molecular Plant Pathology, 42, 345–358.CrossRefGoogle Scholar
  114. Jorgensen, L. N., Jensen, B., & Smedegaard-Petersen, V. (1997). Bion – a compound for disease control in cereal based on induced resistance. Proceedings of the 14th Danish Plant Protection Conference, 8, 35–48.Google Scholar
  115. Kari, A. G., & Griffiths, E. (1993). Components of partial resistance of barley to Rhynchosporium secalis, use of seedling tests to predict field resistance. Annals of Applied Biology, 123, 545–561.CrossRefGoogle Scholar
  116. Kay, J. G., & Owen, H. (1973). Transmission of Rhynchosporium secalis on barley grain. Transaction of the British Mycological Society, 60, 405–411.CrossRefGoogle Scholar
  117. Kendall, S. J., Hollomon, D. W., Cooke, L. R., & Jones, D. R. (1993). Changes in sensitivity to DMI fungicides in Rhynchosporium secalis. Crop Protection, 12, 357–362.CrossRefGoogle Scholar
  118. Kendall, S. J., Hollomon, D. W., Ishii, H., & Heaney, S. P. (1994). Characterization of benzimidazole resistant strains of Rhynchosporium secalis. Pesticide Science, 40, 175–181.CrossRefGoogle Scholar
  119. Kicherer, S., Backes, G., Walther, U., & Jahoor, A. (2000). Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 100, 881–888.CrossRefGoogle Scholar
  120. Kleeberg, H. (2007). Biological control agents: Requirements and potential in the market. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 596–597.Google Scholar
  121. Kølster, P., Munk, L., & Stølen, O. (1989). Disease severity and grain yield in barley multilines with resistance to powdery mildew. Crop Science, 29, 1459–1463.CrossRefGoogle Scholar
  122. Kramer, T., Gildemacher, B. H., van der Ster, M., & Parlevliet, J. E. (1980). Tolerance of spring barley cultivars to leaf rust, Puccinia hordei. Euphytica, 29, 209–216.CrossRefGoogle Scholar
  123. Kudsk, P. (2007). Crop protection in Europe at the crossroads: Challenges facing European farmers. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 734–735.Google Scholar
  124. Lagudah, E. S., Moullett, O., & Appels, R. (1997). Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome, 40, 659–665.PubMedCrossRefGoogle Scholar
  125. Lardy, G. P., & Bauer, M. L. (1999). Feeding barley to beef cattle. EB-70. NDSU Extension Service.Google Scholar
  126. Latacz-Lohmann, U. (2002). Path dependence, technological lock-in and the prospects for organic agriculture. Agricultural Economics Society Annual Conference, 8-11 April 2002, Aberystwyth. Google Scholar
  127. Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A., & Ellis, J. G. (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell, 7, 1195–1206.PubMedCrossRefGoogle Scholar
  128. Leach, C. M. (1979). A Theoretical Consideration of the Epidemiology of Seed-borne Plant Pathogens (pp. 227–233). Londrina, Brazil: Seed Pathology Problems and progress. Proceedings of the First Latin American Workshop on Plant Pathology.Google Scholar
  129. Lehnackers, H., & Knogge, W. (1990). Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Canadian Journal of Botany, 68, 1953–1961.Google Scholar
  130. Leisova, L., Kucera, L., Minarikova, V., & Ovesna, J. (2005). AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathology, 54, 66–73.CrossRefGoogle Scholar
  131. Linde, C. C., Zala, M., Ceccarelli, S., & McDonald, B. A. (2003). Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genetics and Biology, 40, 115–125.PubMedCrossRefGoogle Scholar
  132. Liu, J., Liu, D., Tao, W., Li, W., Wang, S., Chen, P., Cheng, S., & Gao, D. (2000). Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breeding, 119, 21–24.CrossRefGoogle Scholar
  133. Liu, Z., Ellwood, S. R., Oliver, R. P., & Friesen, T. L. (2011). Pyrenophora teres: profile of an increasingly damaging pathogen. Molecular Plant Pathology, 12, 1–19.PubMedCrossRefGoogle Scholar
  134. Locke, T., & Phillips, A. N. (1995). The occurrence of carbendazim resistance in Rhynchosporium secalis on winter barley in England and Wales in 1992 and 1993. Plant Pathology, 44, 294–300.CrossRefGoogle Scholar
  135. Lockeretz, W. (1988). Open questions on sustainable agriculture. American Journal of Alternative Agriculture, 3, 174–181.CrossRefGoogle Scholar
  136. Looseley, M. E., Newton, A. C., Atkins, S. D., Fitt, B. D. L., Fraije, B., Thomas, W. T. B., Keith, R., Lynott, J., & Harrap, D. (2011). Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley. Euphytica. doi: 10.1007/s10681-011-0485-z.
  137. Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., & Coker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46, 126–138.CrossRefGoogle Scholar
  138. Lovell, D. J., Parker, S. R., Hunter, T., Welham, S. J., & Nichols, A. R. (2004). Position of inoculum in the canopy affects the risk of septoria tritici blotch epidemics in winter wheat. Plant Pathology, 53, 11–21.CrossRefGoogle Scholar
  139. Magdoff, F. (2007). Ecological agriculture: Principles, practices and constraints. Renewable Agricultureand Food Systems, 22, 109–117.CrossRefGoogle Scholar
  140. Makepeace, J. C. (2006). The effect of the mlo mildew resistance gene on spotting diseases of barley. Norwich, UK: PhD Thesis, University of East Anglia.Google Scholar
  141. Mammadov, J. A., Liu, Z., Biyashev, R. M., Muehlbauer, G. J., & Maroof, M. A. S. (2006). Cloning, genetic and physical mapping of resistance gene analogs in barley (Hordeum vulgare L.). Plant Breeding, 125, 32–42.CrossRefGoogle Scholar
  142. Manisterski, J., & Anikster, Y. (1994). New resistance genes to the brown leaf rust, Puccinia hordei in wild barley from Israel. Barley Genetics Newsletter, 24, 102–103.Google Scholar
  143. McDermott, J. M., McDonald, B. A., Allard, R. W., & Webster, R. K. (1989). Genetic variability for pathogenicity, isozyme, ribosomal DNA and colony color variants in populations of Rhynchosporium secalis. Genetics, 122, 561–565.PubMedGoogle Scholar
  144. McNeely, J. A., & Scherr, S. J. (2003). Ecoagriculture: Strategies for Feeding the World and Conserving Wild Biodiversity. Washington, DC: Island Press.Google Scholar
  145. Mercer, P., Ruddock, A., & Reavey, C. (2006). Problems facing the growing of organic cereals in N. Ireland. Proceedings Crop Protection in Northern Britain, 2006, 163–168.Google Scholar
  146. Mirlohi, A., Brueggeman, R., Drader, T., Nirmala, J., Steffenson, B. J., & Kleinhofs, A. (2008). Allele sequencing of the barley stem rust resistance gene Rpg1 identifies regions relevant to disease resistance. Phytopathology, 98, 910–918.PubMedCrossRefGoogle Scholar
  147. Mitchell, A. F., & Walters, D. R. (2004). Potassium phosphate induces systemic protection in barley to powdery mildew infection. Pest Management Science, 60, 126–134.PubMedCrossRefGoogle Scholar
  148. Mitchell, A. F., & Walters, D. R. (1995). Systemic protection in barley against powdery mildew using methyl jasmonate. Aspects of Applied Biology, 42, 323–326.Google Scholar
  149. Montgomery, D. C. (1997). Introduction to Statistical Quality Control (3rd ed.). New York: John Wiley and Sons, Inc.Google Scholar
  150. Mundt, C. C. (1994). Use of host genetic diversity to control cereal diseases: Implications for rice blast. In R. S. Zeigler, S. A. Leong, & P. S. Teng (Eds.), Rice Blast Disease (pp. 293–308). London: CAB International.Google Scholar
  151. Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.PubMedCrossRefGoogle Scholar
  152. Newman, P. L., & Owen, H. (1985). Evidence of asexual recombination in Rhynchosporium secalis. Plant Pathology, 34, 338–40.CrossRefGoogle Scholar
  153. Newton, A. C. (1991). Isozyme variability in isolates of some facultative phytopathogenic fungi. Journal of Phytopathology, 131, 199–204.CrossRefGoogle Scholar
  154. Newton, A. C., & Thomas, W. T. B. (1992). The effect of specific and non-specific resistance in mixtures of barley genotypes on infection by mildew (Erysiphe graminis f.sp. hordei) and on yield. Euphytica, 59, 73–81.Google Scholar
  155. Newton, A. C., & Thomas, W. T. B. (1993). The interaction of either an effective or a defeated major gene with non-specific resistance on mildew infection (Erysiphe graminis f.sp. hordei) and yield in mixtures of barley. Journal of Phytopathology, 139, 268–274.CrossRefGoogle Scholar
  156. Newton, A. C., Ellis, R. P., Hackett, C. A., & Guy, D. C. (1997). The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathology, 46, 930–938.CrossRefGoogle Scholar
  157. Newton, A. C., Hackett, C. A., & Guy, D. C. (1998). Diversity and complexity of Erysiphe graminis f.sp. hordei collected from barley cultivar mixtures or barley plots treated with a resistance elicitor. European Journal of Plant Pathology, 104, 925–931.CrossRefGoogle Scholar
  158. Newton, A. C., Swanston, J. S., Guy, D. C., & Ellis, R. P. (1998). The effect of cultivar mixtures on malting quality in winter barley. Journal of the Institute of Brewing, 104, 41–45.Google Scholar
  159. Newton, A. C., Thomas, W. T. B., Guy, D. C., & Gaunt, R. E. (1998). The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley. Field Crops Research, 55, 45–56.CrossRefGoogle Scholar
  160. Newton, A. C., Searle, J., Hackett, C. A., & Cooke, D. E. L. (2001). Variability in pathotype, aggressiveness, RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Journal of Plant Disease and Protection, 108, 446–458.Google Scholar
  161. Newton, A. C., Guy, D. C., Nadziak, J., & Gacek, E. (2002). The effect of inoculum pressure, germplasm selection and environment on spring barley cultivar mixtures efficacy. Euphytica, 125, 325–335.CrossRefGoogle Scholar
  162. Newton, A. C., Swanston, J. S., & Guy, D. C. (2004). Enhanced durability and utility of genes for resistance by deployment in cultivar mixtures. In I. Tikhonovich, B. Lugtenberg, & N. Provorov (Eds.), Biology of Plant-Microbe Interactions, 4 (pp. 240–243). St Petersburg: Russia.Google Scholar
  163. Newton, A. C., Hackett, C. A., & Swanston, J. S. (2008). Analysing the contribution of component cultivars and cultivar combinations to malting quality, yield and disease in complex mixtures. Journal of the Science of Food and Agriculture, 88, 2142–2152.CrossRefGoogle Scholar
  164. Newton, A. C., & Guy, D. C. (2009). The effects of uneven, patchy cultivar mixtures on disease control and yield in winter barley. Field Crops Research, 110, 225–228.CrossRefGoogle Scholar
  165. Newton, A. C., Begg, G. S., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. Annals of Applied Biology, 154, 309–322.CrossRefGoogle Scholar
  166. Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010a). Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends in Microbiology, 18, 365–373.PubMedCrossRefGoogle Scholar
  167. Newton, A. C., Bengough, A. G., Guy, D. C., McKenzie, B. M., & Hallett, P. D. (2010b). Interactions between barley cultivars and soil cultivation - effects on yield and disease. Proceedings Crop Protection in Northern Britain, 2010, 137–142.Google Scholar
  168. Newton, A. C., Gravouil, C., & Fountaine, J. M. (2010c). Managing the ecology of foliar pathogens: ecological tolerance in crops. Annals of Applied Biology, 157, 343–359.CrossRefGoogle Scholar
  169. Newton, A. C., Akar, T., Baresel, J. P., Bebeli, P. J., Bettencourt, E., Bladenopoulos, K. V., Czembor, J. H., Fasoula, D. A., Katsiotis, A., Koutis, K., Koutsika-Sotiriou, M., Kovacs, G., Larsson, H., de Carvalho, M. A. A. P., Rubiales, D., Russell, J., Dos Santos, T. M. M., & Patto, M. C. V. (2010d). Cereal landraces for sustainable agriculture, a review. Agronomy for Sustainable Development, 20, 237–269.CrossRefGoogle Scholar
  170. Newton, A. C., Flavell, A. J., George, T. S., Leat, P., Mullholland, B., Ramsay, L., Revoredo-Giha, C., Russell, J., Steffenson, B., Swanston, J. S., Thomas, W. T. B., Waugh, R., White, P. J., & Bingham, I. J. (2011). Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security, 3, 141–178.CrossRefGoogle Scholar
  171. Newton, A. C., Guy, D. C., Bengough, A. G., Gordon, D. C., McKenzie, B. M., Sun, B., Valentine, T., & Hallett, P. D. (2012). Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Research, (accepted).Google Scholar
  172. Newton, A. C., & Guy, D. C. (2011). Scale and spatial structure effects on the outcome of barley cultivar mixture trials for disease control. Field Crops Research, 123, 74–79.CrossRefGoogle Scholar
  173. Nevo, E. (2007). Evolution of wild wheat and barley and crop improvement: Studies at the Institute of Evolution. Israel Journal of Plant Sciences, 55, 251–262.CrossRefGoogle Scholar
  174. Niks, R. N., & Rubiales, D. (2002). Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 124, 201–216.CrossRefGoogle Scholar
  175. Nitzsche, W., & Hasselbach, J. (1983). Sortenmischungen statt Viellinien-Sorten. 1. Somergerste (Hordeum vulgare L.). Zeitschrift für Pfl anzenzuchtung, 90, 68–74.Google Scholar
  176. Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  177. Office of Technology Assessment, U.S. Congress. (1990). A plague of locusts. Special Report, OTA-F-450. U.S. Washington, DC: GPO.Google Scholar
  178. Owen, H. (1958). Physiological races of Rhynchosporium secalis on cultivated barley. Transactions of the British Mycological Society, 46, 404–408.Google Scholar
  179. Owen, H. (1963). Physiological specialisation in Rhynchosporium secalis. Transactions of the British Mycological Society, 41, 99–108.CrossRefGoogle Scholar
  180. Oxley, S. J. P., Cooke, L. R., Black, L., Hunter, A., & Mercer, P. C. (2003). Management of rhynchosporium in different barley varieties and cropping systems. London: UK, Home-Grown Cereals Authority, Project Report. 315.Google Scholar
  181. Oxley, S.J.P., & Burnett, F. (2009). Barley disease control. SAC Technical Note TN619. ISBN 1 85482 873 8.Google Scholar
  182. Oxley, S.J.P., & Havis, N.D. (2010). Managing Ramularia collo-cygni through varietal resistance, seed health and forecasting. Project Report No. 463, HGCA, London.Google Scholar
  183. Parker, S. R., Welham, S., Paveley, N. D., Foulkes, J., & Scott, R. K. (2004). Tolerance of septoria leaf blotch in winter wheat. Plant Pathology, 53, 1–10.CrossRefGoogle Scholar
  184. Parry, D. (1990). Plant Pathology in Agriculture. Cambridge: Cambridge University Press.Google Scholar
  185. Paveley, N., Foulkes, J., Sylvester-Bradley, R., Parker, S., Lovell, D., Snape, J., Farrar, J., Neumann, S., Nason, J. & Ellerbrook, C. (2005). Maximising disease escape, resistance and tolerance in wheat through genetic analysis and agronomy. pp. 22, HGCA Project Report No. 358.Google Scholar
  186. Paveley, N. D., Sylvester-Bradley, R., Scott, R. K., Craigon, J., & Day, W. (2001). Steps in predicting the relationship of yield on fungicide dose. Phytopathology, 91, 708–716.PubMedCrossRefGoogle Scholar
  187. Paynter, B., & Hills, A. (2007). Mixing feed barley cultivars to decrease leaf diseases and increase grain yield. Proceedings 13th Australian Barley Technical Symposium, Perth, Western Australia. Google Scholar
  188. Peterhansel, C., & Lahaye, T. (2005). Be fruitful and multiply: gene amplification inducing pathogen resistance. Trends in Plant Science, 10, 257–260.PubMedCrossRefGoogle Scholar
  189. Pickering, R. A., Hill, A. M., Michel, M., & TimmermanVaughan, G. M. (1995). The transfer of a powdery mildew resistance gene from Hordeum bulbosum L to barley (H. vulgare L) chromosome 2(21). Theoretical and Applied Genetics, 91, 1288–1292.CrossRefGoogle Scholar
  190. Pieterse, C. M. J., & Van Loon, L. C. (2007). Signalling cascades involved in induced resistance. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (pp. 65–88). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  191. Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B, 363, 447–465.CrossRefGoogle Scholar
  192. Rau, D., Attene, G., Brown, A. H. D., Nanni, L., Maier, F. J., Balmas, V., Saba, E., Schafer, W., & Papa, R. (2007). Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley ‘net blotch’ disease. Current Genetics, 51, 377–392.PubMedCrossRefGoogle Scholar
  193. Reglinski, T., Newton, A. C., & Lyon, G. D. (1994a). Induction of resistance mechanisms in barley by yeast derived elicitors. Annals of Applied Biology, 124, 509–517.CrossRefGoogle Scholar
  194. Reglinski, T., Newton, A. C., & Lyon, G. D. (1994b). Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. Journal of Plant Diseases and Protection, 101, 1–10.Google Scholar
  195. Reignault, P., & Walters, D. (2007). Topical application of inducers for disease control. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (pp. 179–200). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  196. Reuveni, R., Dor, G., & Reuveni, M. (1998). Local and systemic control of powdery mildew (Leveillula taurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Protection, 17, 703–709.CrossRefGoogle Scholar
  197. Revoredo-Giha, C., Watts, D., & Leat, P. (2011). An analysis of marketing channels for local food in Scotland. SADC Rural Policy Centre, Research Briefing 2011/08.
  198. Richardson, D. M. (2005). The registration process, its effect on active substance availability, and initiatives to reduce the impact on minor crops at both UK and EU level. Proceedings of the BCPC International Congress – Crop Science and Technology 2005. Vol., 1, 231–238.Google Scholar
  199. Richardson, K., Vales, M., Kling, J., Mundt, C., & Hayes, P. (2006). Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theoretical and Applied Genetics, 113, 485–495.PubMedCrossRefGoogle Scholar
  200. Ridout, C. J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J. D., & Brown, J. K. (2006). Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. The Plant Cell, 18, 2402–2414.PubMedCrossRefGoogle Scholar
  201. Robert, C., Fournier, C., Andrieu, B., & Ney, B. (2008). Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant-pathogen interactions linked to canopy architecture. Functional Plant Biology, 35, 997–1013.CrossRefGoogle Scholar
  202. Roberts, R. S., & Lighthall, D. (1993). A developmental approach to the adoption of low-input farming practices. Leopold Center for Sustainable Agriculture, 2, 93–96.Google Scholar
  203. Rohe, M., Gierlich, A., Hermann, H., Hahn, M., Schmidt, B., Rosahl, S., & Knogge, W. (1995). The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO Journal, 14, 4168–4177.PubMedGoogle Scholar
  204. Röling, N. (1988). Extension science: Information systems in agricultural development. Cambridge, UK: Cambridge University Press.Google Scholar
  205. Roy, J. K., Smith, K. P., Muehlbauer, G. J., Chao, S. M., Close, T. J., & Steffenson, B. J. (2010). Association mapping of spot blotch resistance in wild barley. Molecular Breeding, 26, 243–256.PubMedCrossRefGoogle Scholar
  206. Royle, D. J. (1994). Understanding and predicting epidemics: a commentary based on selected pathosystems. Plant Pathology, 43, 777–789.CrossRefGoogle Scholar
  207. Ruge, B., Linz, A., Pickering, R., Proeseler, G., Greif, P., & Wehling, P. (2003). Mapping of Rym14(Hb), a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theoretical and Applied Genetics, 107, 965–971.PubMedCrossRefGoogle Scholar
  208. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., & Steiner, H. (1996). Systemic acquired resistance. The Plant Cell, 8, 1808–1819.CrossRefGoogle Scholar
  209. Salamati, S., Zhan, J., Burdon, J. J., & McDonald, B. A. (2000). The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology, 90, 901–908.PubMedCrossRefGoogle Scholar
  210. Salamati, S., & Reitan, L. (2006). Ramularia collo-cygni on spring barley, an overview of its biology and epidemiology. In A. von Tiedemann, A. Schützendübel, & B. Koopman (Eds.), Abstracts of the First European Ramularia workshop (p. 13). Germany: Georg-August University Göttingen.Google Scholar
  211. Schafer, J. (1971). Tolerance to plant disease. Annual Review of Phytopathology, 9, 235–252.CrossRefGoogle Scholar
  212. Schein, R. D. (1958). Pathogenic specialization in Rhynchosporium secalis. Phytopathology, 48, 477–480.Google Scholar
  213. Schein, R. D. (1959). Resistance to Rhynchosporium secalis in the barley world collection. Phytopathology, 49, 549–50.Google Scholar
  214. Scherr, S. J., & McNeely, J. A. (2008). Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philosophical Transactions of the Royal Society B, 363, 477–494.CrossRefGoogle Scholar
  215. Scheurer, K. S., Friedt, W., Huth, W., Waugh, R., & Ordon, F. (2001). QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 103, 1074–1083.CrossRefGoogle Scholar
  216. Schweizer, P., Gees, R., & Mosinger, E. (1993). Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L) with the powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiology, 102, 503–511.PubMedGoogle Scholar
  217. Scott, D. B. (1991). Identity of Pyrenophora teres isolates causing net-type and spot type lesions on barley. Mycopathologia, 116, 29–35.CrossRefGoogle Scholar
  218. Selvin, S. (1996). Statistical Analysis of Epidemiologic Data (2nd ed.). New York: Oxford University Press.Google Scholar
  219. Semar, M., Strobel, D., Koch, A., Klappach, K., & Stammler, G. (2007). Field efficacy of pyralosstrobin against populations of Pyrenophora teres containing the F129L mutation in the cytochrome b gene. Journal of Plant Diseases and Protection, 114, 117–119.Google Scholar
  220. Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K., & Schulze-Lefert, P. (2003). Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. The Plant Cell, 15, 732–744.PubMedCrossRefGoogle Scholar
  221. Shen, Q. H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I. E., & Schulze-Lefert, P. (2007). Nuclear activity of MLa immune receptors links isolate-specific and basal disease-resistance responses. Science, 315, 1098–1103.PubMedCrossRefGoogle Scholar
  222. Shipton, W. A., Boyd, W. J., & Alt, S. M. (1974). Scald of Barley. Review of Plant Pathology, 53, 839–861.Google Scholar
  223. Sierotzki, H., Wullschleger, J., & Gisi, U. (2000). Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f. sp. tritici field isolates. Pesticide Biochemistry and Physiology, 68, 107–112.CrossRefGoogle Scholar
  224. Skoropad, W. P. (1960). Barley scald in the prairie provinces of Canada. Commonwealth Phytopathology News, 6, 25–27.Google Scholar
  225. Smedegård-Petersen, V. (1971). Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres on barley in Denmark. Yearbook 1971 (pp. 124–144). Copenhagen: The Royal Veterinary and Agricultural University.Google Scholar
  226. Smedegard-Petersen, V. (1977). Respiration changes of barley leaves infected with Pyrenophora teres or affected by isolated toxins of the fungus. Physiological Plant Pathology, 10, 213–220.CrossRefGoogle Scholar
  227. Stadnik, M. J., & Buchenauer, H. (1999). Control of wheat diseases by a benzothiadiazole-derivative and modern fungicides. Journal of Plant Disease and Protection, 106, 466–475.Google Scholar
  228. Steffenson, B. J., Olivera, P., Roy, J. K., Jin, Y., Smith, K. P., & Muehlbauer, G. J. (2007). A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Australian Journal of Agricultural Research, 58, 532–544.CrossRefGoogle Scholar
  229. Stern, V. M., Smith, R. M., van den Bosch, R., & Hagen, K. S. (1959). The integrated control concept. Hilgardia, 29, 81–99.Google Scholar
  230. Sturz, A. V., Carter, M. R., & Johnston, H. W. (1997). A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil & Tillage Research, 41, 169–189.CrossRefGoogle Scholar
  231. Sunding, D. L., & Zilberman, D. (2001). The Agricultural Innovation Process: Research and Technology Adoption in a Changing Agricultural Sector. In B. Gardner & G. Rausser (Eds.), Handbook of Agricultural and Resource Economics. Amsterdam: North Holland.Google Scholar
  232. Swanston, J. S., Newton, A. C., Brosnan, J. M., & Broadhead, A. (2005). Determining the spirit yield of wheat varieties and variety mixtures. Journal of Cereal Science, 42, 127–134.CrossRefGoogle Scholar
  233. Swanston, J. S., Newton, A. C., Hoad, S., & Spoor, W. (2006). Variation across environments in patterns of water uptake and endosperm modifi cation in barley varieties and variety mixtures. Journal of the Science of Food and Agriculture, 86, 826–833.CrossRefGoogle Scholar
  234. Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Better decisions through science. Scientific American, 283, 70–75.CrossRefGoogle Scholar
  235. Taggart, P. J., Cooke, L. R., & Mercer, P. C. (1994). Benzimidazole resistance in Rhynchosporium secalis in Northern Ireland and its implications for disease control. Fungicide Resistance, BCPC No, 60, 243–246.Google Scholar
  236. Taylor, D. C., & Dobbs, T. L. (1990). Sustainable Agriculture: Focus on producers. South Dakota Farm and Home Research, 40(1), 15–18.Google Scholar
  237. Thirugnanasambandam, A., Wright, K., Havis, N., Whisson, S., & Newton, A. C. (2011). Agrobacterium-mediated transformation of the barley pathogen Ramularia collo-cygni with fluorescent marker tags and live tissue imaging of infection development. Plant Pathology, 60, 929–937.CrossRefGoogle Scholar
  238. Thirugnanasambandam, A., Wright, K. M., Atkins, S. D., Whisson, S. C., & Newton, A. C. (2011). Infection of Rrs1 barley by an incompatible race of the fungus, Rhynchosporium secalis, expressing the green fluorescent protein. Plant Pathology, 60, 513–521.CrossRefGoogle Scholar
  239. Thomas, W. T. B., Powell, W., Waugh, R., Chalmers, K. J., Barua, U. M., Jack, P., Lea, V., Forster, B. P., Swanston, J. S., Ellis, R. P., Hanson, P. R., & Lance, R. C. M. (1995). Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 91, 1037–1047.CrossRefGoogle Scholar
  240. Ton, J., & Mauch-Mani, B. (2004). β-aminobutyric acid-induced resistance against necrotrophic pathogens is based upon ABA-dependent priming for callose. The Plant Journal, 38, 119–130.PubMedCrossRefGoogle Scholar
  241. Toojinda, T., Broers, L. H., Chen, X. M., Hayes, P. M., Kleinhofs, A., Korte, J., Kudrna, D., Leung, H., Line, R. F., Powell, W., Ramsay, L., Vivar, H., & Waugh, R. (2000). Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theoretical and Applied Genetics, 101, 580–589.CrossRefGoogle Scholar
  242. Tuohy, J. M., Jalli, M., Cooke, B. M., & Sullivan, E. O. (2006). Pathogenic variation in populations of Drechslera teres f. teres and D. teres F. maculate and differences in host cultivar responses. European Journal of Plant Pathology, 116, 177–185.CrossRefGoogle Scholar
  243. Tyrka, M., Perovic, D., Wardynska, A., & Ordon, F. (2008). A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. Journal of Applied Genetics, 49, 127–134.PubMedCrossRefGoogle Scholar
  244. Vanderplank, J. E. (1968). Disease resistance in plants. New York: Academic.Google Scholar
  245. Van Diepeningen, A. D., de Vos, O. J., Zelenev, V. V., Semenov, A. M., & van Bruggen, A. H. C. (2005). DGGE fragments oscillate with or counter to fluctuations of cultivable bacteria along wheat roots. Microbial Ecology, 50, 506–517.PubMedCrossRefGoogle Scholar
  246. Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences USA, 103, 5602–5607.CrossRefGoogle Scholar
  247. van Leur, J. A. G., Ceccarelli, S., & Grando, S. (2006). Diversity for Disease Resistance in Barley Landraces from Syria and Jordan. Plant Breeding, 103, 324–335.CrossRefGoogle Scholar
  248. Vleeshouwers, V. G. A. A., Rietman, H., Krenek, P., Champouret, N., Young, C., Oh, S.-K., Wang, M., Bouwmeester, K., Vosman, B., Visser, R. G. F., Jacobsen, E., Govers, F., Kamoun, S., & Van der Vossen, E. A. G. (2008). Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes. PLoS One, 3, e2875. doi: 10.1371/journal.pone.0002875.PubMedCrossRefGoogle Scholar
  249. Wallwork, H. (2007). The role of minimum disease resistance standards for the control of cereal diseases. Australian Journal of Agricultural Research, 58, 588–592.CrossRefGoogle Scholar
  250. Wallwork, H. (2009). The use of host plant resistance in disease control. In D. Walters (Ed.), Disease Control in Crops: biological and environmentally friendly approaches (pp. 122–141). Oxford: Wiley-Blackwell.Google Scholar
  251. Walters, D. (2009). Controlling plant disease using biological and environmentally friendly approaches: making it work in practice. In D. Walters (Ed.), Disease Control in Crops (pp. 257–261). Oxford: Wiley Blackwell.CrossRefGoogle Scholar
  252. Walters, D. R. (2010). Plant Defense: warding off attack by pathogens, herbivores and parasitic plants. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  253. Walters, D. R., Cowley, T., & Mitchell, A. F. (2002). Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. Journal of Experimental Botany, 53, 747–756.PubMedCrossRefGoogle Scholar
  254. Walters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71, 3–17.CrossRefGoogle Scholar
  255. Walters, D. R., McRoberts, N., & Fitt, B. D. L. (2008). Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biological Reviews, 83, 79–102.PubMedCrossRefGoogle Scholar
  256. Walters, D. R., Havis, N. D., & Oxley, S. J. P. (2008). Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiology Letters, 279, 1–7.PubMedCrossRefGoogle Scholar
  257. Walters, D. R., Paterson, L., Walsh, D. J., & Havis, N. D. (2009). Priming for plant defense in barley provides benefits only under high disease pressure. Physiological and Molecular Plant Pathology, 73, 95–100.CrossRefGoogle Scholar
  258. Walters, D. R., Paterson, L., & Havis, N. D. (2010). Control of foliar diseases of spring barley using resistance elicitors. Proceedings Crop Protection Northern Britain, 2010, 91–96.Google Scholar
  259. Walters, D.R., Havis, N.D., Paterson, L., Taylor, J., & Walsh, D.J. (2011a). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95, 595–600.Google Scholar
  260. Walters, D. R., Paterson, L., Sablou, C., & Walsh, D. J. (2011). Existing infection with Rhynchosporium secalis compromises the ability of barley to express induced resistance. European Journal of Plant Pathology, 130, 73–82.Google Scholar
  261. Wenzel G., Frei U., Lübberstedt T., Mohler V. & Thümmler F. (2001) Plant breeding at the onset of the 3 rd millennium. Proc conf crop improvement at the XXI century. 3 July 2001, Radzikow, Poland, 13–25Google Scholar
  262. Werner, K., Friedt, W., & Ordon, F. (2005). Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Molecular Breeding, 16, 45–55.CrossRefGoogle Scholar
  263. Whipps, J.M. (2007). Complex multitrophic interactions in the plant environment can affect disease biocontrol. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 432–433.Google Scholar
  264. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., & Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleuken-1 receptor. Cell, 78, 1101–1115.PubMedCrossRefGoogle Scholar
  265. Whittaker, M.S. (2007). Regulatory innovation and the biopesticide industry. Proceedings of the XVI International Plant Protection Congress, 15–18 October 2007, Glasgow, Scotland, 600–601 .Google Scholar
  266. Wiese, J., Bagy, M. K. K., & Schubert, S. (2003). Soil properties, but not plant nutrients (N, P, K) interact with chemically induced resistance against powdery mildew in barley. Journal of Plant Nutrition and Soil Science, 166, 379–384.CrossRefGoogle Scholar
  267. Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251–273.CrossRefGoogle Scholar
  268. Wolfe, M. S. (1997). Variety mixtures: Concept and value. In: Wolfe MS, ed. Variety Mixtures in Theory and Practice. European Union Variety and Species Mixture working group of COST Action 817. Online at:
  269. Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S. P., Kovacs, G., Löschenberger, F., Miedaner, T., Østergård, H., & Lammerts van Bueren, E. T. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323–346.CrossRefGoogle Scholar
  270. Wu, H. L., Steffenson, B. J., Oleson, A. E., & Zhong, S. (2003). Genetic variation for virulence and RFLP markers in Pyrenophora teres. Canadian Journal of Plant Pathology, 25, 82–90.CrossRefGoogle Scholar
  271. Wu, Y. X., & von Tiedemann, A. (2001). Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pesticide Biochemistry and Physiology, 71, 1–10.CrossRefGoogle Scholar
  272. Xi, K., Turkington, T. K., Helm, J. H., & Bos, C. (2003). Pathogenic variation of Rhynchosporium secalis in Alberta. Canadian Journal of Plant Pathology, 24, 176–83.CrossRefGoogle Scholar
  273. Xi, K., Bos, C., Turkington, T. K., Xue, A. G., Burnett, P. A., & Juskiw, P. E. (2008). Interaction of net blotch and scald on barley. Canadian Journal of Plant Pathology, 30, 329–334.CrossRefGoogle Scholar
  274. Youcef-Benkada, M., Bendhamane, B. S., Barrault, A. A. S. Y. G., & Albertini, L. (1994). Effects of inoculation of barley inflorescences with Drechshlera teres upon the location of seed-borne inoculums and its transmission to seedlings as modified by temperature and soil moisture. Plant Pathology, 43, 350–355.CrossRefGoogle Scholar
  275. Yu, Y., Tomkins, J. P., Waugh, R., Frisch, D. A., Kudrna, D., Kleinhofs, A., Brueggeman, R. S., Muehlbauer, G. J., Wise, R. P., & Wing, R. A. (2000). A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics, 101, 1093–1099.CrossRefGoogle Scholar
  276. Yuen, J., Twengström, E., & Sigvald, R. (1996). Calibration and verification of risk algorithms using logistic regression. European Journal of Plant Pathology, 102, 847–854.CrossRefGoogle Scholar
  277. Yun, S. J., Gyenis, L., Hayes, P. M., Matus, I., Smith, K. P., Steffenson, B. J., & Muehlbauer, G. J. (2005). Quantitative trait loci for multiple disease resistance in wild barley. Crop Science, 45, 2563–2572.CrossRefGoogle Scholar
  278. Zaffarano, P. L., McDonald, B. A., Zala, M., & Linde, C. C. (2006). Global hierarchical gene diversity analysis suggests the Fertile Crescent is not the center of origin of the barley scald pathogen Rhynchosporium secalis. Phytopathology, 96, 941–950.PubMedCrossRefGoogle Scholar
  279. Zaffarano, P. L., McDonald, B. A., & Linde, C. C. (2011). Two new species of Rhynchosporium. Mycologia, 103, 195–202.Google Scholar
  280. Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P., & Newton, A. C. (2008). Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology, 57, 1–14.Google Scholar
  281. Zhou, F., Kurth, J., Wei, F., Elliott, C., Valé, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R., & Schulze-Lefert, P. (2001). Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. The Plant Cell, 13, 337–350.PubMedCrossRefGoogle Scholar
  282. Zimmerli, L., Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proceedings of the National Academy of Sciences USA, 97, 12920–12925.CrossRefGoogle Scholar
  283. Zimmerli, L., Metraux, J.-P., & Mauch-Mani, B. (2001). Β-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic pathogen Botrytis cinerea. Plant Physiology, 126, 517–523.PubMedCrossRefGoogle Scholar
  284. Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 20, 10–16.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Dale R. Walters
    • 1
  • Anna Avrova
    • 3
  • Ian J. Bingham
    • 1
  • Fiona J. Burnett
    • 1
  • James Fountaine
    • 1
  • Neil D. Havis
    • 1
  • Stephen P. Hoad
    • 1
  • Gareth Hughes
    • 1
  • Mark Looseley
    • 3
  • Simon J. P. Oxley
    • 4
  • Alan Renwick
    • 2
  • Cairistiona F. E. Topp
    • 2
  • Adrian C. Newton
    • 3
  1. 1.Crop and Soil Systems Research Group, Scottish Agricultural CollegeEdinburghUK
  2. 2.Land Economy and Environment Research Group, Scottish Agricultural CollegeEdinburghUK
  3. 3.The James Hutton InstituteDundeeUK
  4. 4.Home-Grown Cereals AuthorityWarwickshireUK

Personalised recommendations