European Journal of Plant Pathology

, Volume 133, Issue 1, pp 295–313 | Cite as

Impacts of climate change on plant diseases—opinions and trends

  • Marco Pautasso
  • Thomas F. Döring
  • Matteo Garbelotto
  • Lorenzo Pellis
  • Mike J. Jeger


There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases. This overview addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods.


Adaptive ecosystem management Biotic interactions Landscape pathology Phytophthora ramorum Plant disease epidemiology Tree fungal pathogens 



Many thanks to K. Dehnen-Schmutz, T. Harwood, O. Holdenrieder, A. MacLeod, P. Mills, M. Moslonka-Lefebvre, M. Shaw, J. Webber, M. Wolfe and X. Xu for insights and discussions, and to T. Matoni and anonymous reviewers for helpful comments on a previous draft. This review was partly funded by the Rural Economy and Land Use Programme (RELU), UK, and by the French Foundation for Research on Biodiversity (FRB) and is partly based on a presentation at the Climate Change and Plant Disease Management Conference, University of Evora, Portugal, 10–12 November 2010.


  1. Alexander, J., & Lee, C. A. (2010). Lessons learned from a decade of Sudden Oak Death in California: evaluating local management. Environmental Management, 46, 315–328. doi: 10.1007/s00267-010-9512-4.PubMedCrossRefGoogle Scholar
  2. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544. doi: 10.1016/j.tree.2004.07.021.CrossRefGoogle Scholar
  3. Araújo, M. B., Rozenfeld, A., Rahbek, C., & Marquet, P. A. (2011). Using species co-occurrence networks to assess the impacts of climate change. Ecography, 34, 897–908. doi: 10.1111/j.1600-0587.2011.06919.x.CrossRefGoogle Scholar
  4. Archie, E. A., Luikart, G., & Ezenwa, V. O. (2008). Infecting epidemiology with genetics: a new frontier in disease ecology. Trends in Ecology & Evolution, 24, 21–30. doi: 10.1016/j.tree.2008.08.008.CrossRefGoogle Scholar
  5. Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262, 263–286. doi: 10.1016/S0048-9697(00)00528-3.PubMedCrossRefGoogle Scholar
  6. Baeten, L., De Frenne, P., Verheyen, K., Graae, B. J., & Henry, M. (2010). Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecology & Evolution, 143, 19–30. doi: 10.5091/plecevo.2010.414.CrossRefGoogle Scholar
  7. Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A., & Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82, 57–71. doi: 10.1016/S0167-8809(00)00216-4.CrossRefGoogle Scholar
  8. Barnes, A. P., Wreford, A., Butterworth, M. H., Semenov, M. A., Moran, D., Evans, N., et al. (2010). Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. Journal of Agricultural Science, 148, 683–694. doi: 10.1017/S002185961000064X.CrossRefGoogle Scholar
  9. Barrès, B., Halkett, F., Dutech, C., Andrieux, A., Pinon, J., & Frey, P. (2008). Genetic structure of the poplar rust fungus Melampsora larici-populina: evidence for isolation by distance in Europe and recent founder effects overseas. Infection, Genetics and Evolution, 8, 577–587. doi: 10.1016/j.meegid.2008.04.005.PubMedCrossRefGoogle Scholar
  10. Baumgartner, K., Travadon, R., Bruhn, J., & Bergemann, S. E. (2010). Contrasting patterns of genetic diversity and population structure of Armillaria mellea sensu stricto in the eastern and western United States. Phytopathology, 100, 708–718. doi: 10.1094/PHYTO-100-7-0708.PubMedCrossRefGoogle Scholar
  11. Bawa, K. S., & Dayanandan, S. (1998). Global climatic change and tropical forest genetic resources. Climatic Change, 39, 473–485. doi: 10.1023/A:1005360223639.CrossRefGoogle Scholar
  12. Bearchell, S. J., Fraaije, B. A., Shaw, M. W., & Fitt, B. D. L. (2005). Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences USA, 102, 5438–5442. doi: 10.1073/pnas.0501596102.CrossRefGoogle Scholar
  13. Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., & Thuiller, W. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences USA, 108, 2306–2311. doi: 10.1073/pnas.1007217108.CrossRefGoogle Scholar
  14. Bengtsson, S. B. K., Vasaitis, R., Kirisits, T., Solheim, H., & Stenlid, J. (2012). Population structure of Hymenoscyphus pseudoalbidus and its genetic relationship to Hymenoscyphus albidus. Fungal Ecology, in press doi: 10.1016/j.funeco.2011.10.004
  15. Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., et al. (2010). Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. BioScience, 60, 602–613. doi: 10.1525/bio.2010.60.8.6.CrossRefGoogle Scholar
  16. Benvenuti, S. (2009). Potenziale impatto dei cambiamenti climatici nell’evoluzione floristica di fitocenosi spontanee in agroecosistemi mediterranei. Rivista Italiana di Agronomia, S1, 45–67.Google Scholar
  17. Bergot, M., Cloppet, E., Pérarnaud, V., Déqué, M., Marçais, B., & Desprez-Loustau, M.-L. (2004). Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology, 10, 1539–1552. doi: 10.1111/j.1365-2486.2004.00824.x.CrossRefGoogle Scholar
  18. Bernier, P. Y., Desjardins, R. L., Karimi-Zindashty, Y., Worth, D., Beaudoin, A., Luo, Y., et al. (2011). Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America. Agricultural and Forest Meteorology, 151, 521–528. doi: 10.1016/j.agrformet.2010.12.013.CrossRefGoogle Scholar
  19. Blankinship, J. C., Niklaus, P. A., & Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia, 165, 553–565. doi: 10.1007/s00442-011-1909-0.PubMedCrossRefGoogle Scholar
  20. Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29, 59–107. doi: 10.1080/07352681003617285.CrossRefGoogle Scholar
  21. Bodin, P., & Wiman, B. L. B. (2007). The usefulness of stability concepts in forest management when coping with increasing climate uncertainties. Forest Ecology and Management, 242, 541–552. doi: 10.1016/j.foreco.2007.01.066.CrossRefGoogle Scholar
  22. Boland, G. J., Melzer, M. S., Hopkin, A., Higgins, V., & Nassuth, A. (2004). Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26, 335–350. doi: 10.1080/07060660409507151.CrossRefGoogle Scholar
  23. Bradford, J. B., & D’Amato, A. W. (2012). Recognizing trade-offs in multi-objective land management. Frontiers in Ecology and the Environment, in press doi: 10.1890/110031
  24. Bradley, B. A., Blumenthal, D. M., Early, R., Grosholz, E. D., Lawler, J. J., Miller, L. P., et al. (2012). Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, in press doi: 10.1890/110145
  25. Brasier, C., & Webber, J. (2010). Sudden larch death. Nature, 466, 824–825. doi: 10.1038/466824a.PubMedCrossRefGoogle Scholar
  26. Britton, K. O., White, P., Kramer, A., & Hudler, G. (2010). A new approach to stopping the spread of invasive insects and pathogens: early detection and rapid response via a global network of sentinel plantings. New Zealand Journal of Forestry Science, 40, 109–114.Google Scholar
  27. Brosi, G. B., McCulley, R. L., Bush, L. P., Nelson, J. A., Classen, A. T., & Norby, R. J. (2010). Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytologist, 189, 797–805. doi: 10.1111/j.1469-8137.2010.03532.x.PubMedCrossRefGoogle Scholar
  28. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541. doi: 10.1126/science.1072678.PubMedCrossRefGoogle Scholar
  29. Brummer, E. C., Barber, W. T., Collier, S. M., Cox, T. S., Johnson, R., Murray, S. C., et al. (2011). Plant breeding for harmony between agriculture and the environment. Frontiers in Ecology and the Environment, 9, 561–568. doi: 10.1890/100225.CrossRefGoogle Scholar
  30. Burdon, J. J., & Thrall, P. H. (2008). Pathogen evolution across the agro-ecological interface: implications for disease management. Evolutionary Applications, 1, 57–65. doi: 10.1111/j.1752-4571.2007.00005.x.CrossRefGoogle Scholar
  31. Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19–39. doi: 10.1146/annurev.phyto.43.040204.140238.PubMedCrossRefGoogle Scholar
  32. Busby, P. E., & Canham, C. D. (2011). An exotic insect and pathogen disease complex reduces aboveground tree biomass in temperate forests of eastern North America. Canadian Journal of Forest Research, 41, 401–411. doi: 10.1139/X10-213.CrossRefGoogle Scholar
  33. Butterworth, M. H., Semenov, M. A., Barnes, A., Moran, D., West, J. S., & Fitt, B. D. L. (2010). North–South divide: contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society, Interface, 7, 123–130. doi: 10.1098/rsif.2009.0111.PubMedCrossRefGoogle Scholar
  34. Calder, J. A., & Kirkpatrick, J. B. (2008). Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Australian Journal of Botany, 56, 684–692. doi: 10.1071/BT08105.CrossRefGoogle Scholar
  35. Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., & Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences USA, 108, 1474–1478. doi: 10.1073/pnas.1010070108.CrossRefGoogle Scholar
  36. Cerri, C. E. P., Sparovek, G., Bernoux, M., Easterling, W. E., Melillo, J. M., & Cerri, C. C. (2007). Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola, 64, 83–99.CrossRefGoogle Scholar
  37. Chadès, I., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., & Buckley, Y. M. (2011). General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences USA, 108, 8323–8328. doi: 10.1073/pnas.1016846108.CrossRefGoogle Scholar
  38. Chakraborty, S. (2005). Potential impact of climate change on plant-pathogen interactions. Australasian Plant Pathology, 34, 443–448. doi: 10.1071/AP05084.CrossRefGoogle Scholar
  39. Chakraborty, S., & Datta, S. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist, 159, 733–742. doi: 10.1046/j.1469-8137.2003.00842.x.CrossRefGoogle Scholar
  40. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14. doi: 10.1111/j.1365-3059.2010.02411.x.CrossRefGoogle Scholar
  41. Chakraborty, S., Tiedemann, A. V., & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental Pollution, 108, 317–326. doi: 10.1016/S0269-7491(99)00210-9.PubMedCrossRefGoogle Scholar
  42. Chakraborty, S., Luck, J., Hollaway, G., Freeman, A., Norton, R., Garrett, K. A., et al. (2008). Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews, 3, 054. doi: 10.1079/PAVSNNR20083054.Google Scholar
  43. Chakraborty, S., Luck, J., Hollaway, G., Fitzgerald, G., & White, N. (2011). Rust-proofing wheat for a changing climate. Euphytica, 179, 19–32. doi: 10.1007/s10681-010-0324-7.CrossRefGoogle Scholar
  44. Chimera, C. G., Buddenhagen, C. E., & Clifford, P. M. (2010). Biofuels: the risks and dangers of introducing invasive species. Biofuels, 1, 785–796. doi: 10.4155/bfs.10.47.CrossRefGoogle Scholar
  45. Chytrý, M., Wild, J., Pyšek, P., Jarošík, V., Dendoncker, N., Reginster, I., et al. (2012). Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography, 21, 75–87. doi: 10.1111/j.1466-8238.2010.00573.x.CrossRefGoogle Scholar
  46. Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung, B., et al. (2011). Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences USA, 108, 2678–2683. doi: 10.1073/pnas.1011612108.CrossRefGoogle Scholar
  47. Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T. C., Anshary, A., et al. (2011). Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences USA, 108, 8311–8316. doi: 10.1073/pnas.1016799108.CrossRefGoogle Scholar
  48. Coakley, S. M. (1995). Biospheric change - will it matter in plant pathology. Canadian Journal of Plant Pathology, 17, 147–153.CrossRefGoogle Scholar
  49. Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426. doi: 10.1146/annurev.phyto.37.1.399.PubMedCrossRefGoogle Scholar
  50. Cobb, R. C., Chan, M. N., Meentemeyer, R. K., & Rizzo, D. M. (2012). Common factors drive disease and coarse woody debris dynamics in forests impacted by Sudden Oak Death. Ecosystems, in press doi: 10.1007/s10021-011-9506-y
  51. Compant, S., van der Heijden, M. G. A., & Sessitsch, A. (2010). Climate change effects in beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 73, 197–214. doi: 10.1111/j.1574-6941.2010.00900.x.PubMedGoogle Scholar
  52. Crall, A. W., Newman, G. J., Jarnevich, C. S., Stohlgren, T. J., Waller, D. M., & Graham, J. (2010). Improving and integrating data on invasive species collected by citizen scientists. Biological Invasions, 12, 3914–3928. doi: 10.1007/s10530-010-9740-9.CrossRefGoogle Scholar
  53. Crowder, D. W., Northfield, T. D., Strand, M. R., & Snyder, W. E. (2010). Organic agriculture promotes evenness and natural pest control. Nature, 466, 109–112. doi: 10.1038/nature09183.PubMedCrossRefGoogle Scholar
  54. Dale, V., Archer, S., Chang, M., & Ojima, D. (2005). Ecological impacts and mitigation strategies for rural land management. Ecological Applications, 15, 1879–1892. doi: 10.1890/03-5330.CrossRefGoogle Scholar
  55. Dale, A. L., Lewis, K. J., & Murray, B. W. (2011). Sexual reproduction and gene flow in the pine pathogen Dothistroma septosporum in British Columbia. Phytopathology, 101, 68–76. doi: 10.1094/PHYTO-04-10-0121.PubMedCrossRefGoogle Scholar
  56. Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 2011, 284909. doi: 10.1155/2011/284909.PubMedCrossRefGoogle Scholar
  57. Davies, L., Bell, J. N. B., Bone, J., Head, M., Hill, L., Howard, C., et al. (2011). Open Air Laboratories (OPAL): a community-driven research programme. Environmental Pollution, 159, 2203–2210. doi: 10.1016/j.envpol.2011.02.053.PubMedCrossRefGoogle Scholar
  58. De Simone, D., D’Amico, L., Bressanin, D., Motta, E., & Annesi, T. (2011). Molecular characterization of Inonotus rickii/Ptychogaster cubensis isolates from different geographic provenances. Mycological Progress, 10, 301–306. doi: 10.1007/s11557-010-0702-5.CrossRefGoogle Scholar
  59. Dehnen-Schmutz, K., Holdenrieder, O., Jeger, M. J., & Pautasso, M. (2010). Structural change in the international horticultural industry: some implications for plant health. Scientia Horticulturae, 125, 1–15. doi: 10.1016/j.scienta.2010.02.017.CrossRefGoogle Scholar
  60. Deslippe, J. R., Hartmann, M., Mohn, W. W., & Simard, S. W. (2010). Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Global Change Biology, 17, 1625–1636. doi: 10.1111/j.1365-2486.2010.02318.x.CrossRefGoogle Scholar
  61. Desprez-Loustau, M. L., Marçais, B., Nageleisen, L.-M., Piou, D., & Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63, 597–612. doi: 10.1051/forest:2006040.CrossRefGoogle Scholar
  62. Desprez-Loustau, M. L., Robin, C., Buee, M., Courtecuisse, R., Garbaye, R., Suffert, F., et al. (2007a). The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22, 472–480. doi: 10.1016/j.tree.2007.04.005.CrossRefGoogle Scholar
  63. Desprez-Loustau, M. L., Robin, C., Reynaud, G., Deque, M., Badeau, V., Piou, D., et al. (2007b). Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Canadian Journal of Plant Pathology, 29, 101–120.CrossRefGoogle Scholar
  64. Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature, 467, 704–707. doi: 10.1038/nature09407.PubMedCrossRefGoogle Scholar
  65. Dobson, A. (2009). Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology, 90, 920–927. doi: 10.1890/08-0736.1.PubMedCrossRefGoogle Scholar
  66. Dodd, R. S., Hüberli, D., Mayer, W., Harnik, T. Y., Afzal-Rafii, Z., & Garbelotto, M. (2008). Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytologist, 179, 505–514. doi: 10.1111/j.1469-8137.2008.02450.x.PubMedCrossRefGoogle Scholar
  67. Donnelly, A., Caffarra, A., & O’Neill, B. F. (2011). A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology, 55, 805–817. doi: 10.1007/s00484-011-0426-5.PubMedCrossRefGoogle Scholar
  68. Döring, T. F., Knapp, S., Kovacs, G., Murphy, K., & Wolfe, M. S. (2011). Evolutionary plant breeding in cereals - into a new era. Sustainability, 3, 1944–1971. doi: 10.3390/su3101944.CrossRefGoogle Scholar
  69. Dutech, C., Fabreguettes, O., Capdevielle, X., & Robin, C. (2010). Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France. Heredity, 105, 220–228. doi: 10.1038/hdy.2009.164.PubMedCrossRefGoogle Scholar
  70. Eastburn, D. M., Degennaro, M. M., Delucial, E. H., Demody, O., & McElrone, A. J. (2009). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330. doi: 10.1111/j.1365-2486.2009.01978.x.CrossRefGoogle Scholar
  71. Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60, 54–69. doi: 10.1111/j.1365-3059.2010.02402.x.CrossRefGoogle Scholar
  72. Egli, S. (2011). Mycorrhizal mushroom diversity and productivity - an indicator of forest health? Annals of Forest Science, 68, 81–88. doi: 10.1007/s13595-010-0009-3.CrossRefGoogle Scholar
  73. Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araujo, M. B., et al. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330–2341. doi: 10.1111/j.1365-2486.2010.02393.x.CrossRefGoogle Scholar
  74. Erlacher, E., & Wang, M. (2011). Regulation (EC) No. 1107/2009 and upcoming challenges for exposure assessment of plant protection products - harmonisation or national modelling approaches? Environmental Pollution, 159, 3357–3363. doi: 10.1016/j.envpol.2011.08.036.PubMedCrossRefGoogle Scholar
  75. Ewers, R. M., Scharlemann, J. P. W., Balmford, A. P., & Green, R. E. (2009). Do increases in agricultural yield spare land for nature? Global Change Biology, 15, 1716–1726. doi: 10.1111/j.1365-2486.2009.01849x.CrossRefGoogle Scholar
  76. Fabre, B., Piou, D., Desprez-Loustau, M.-L., & Marçais, B. (2011). Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Global Change Biology, 17, 3218–3227. doi: 10.1111/j.1365-2486.2011.02428.x.CrossRefGoogle Scholar
  77. Finckh, M. R., & Wolfe, M. S. (1996). The use of biodiversity to restrict plant diseases and some consequences for farmers and society. In L. E. Jackson (Ed.), Ecology in agriculture (pp. 203–237). Dordrecht: Elsevier. doi: 10.1016/B978-012378260-1/50008-7.Google Scholar
  78. Fischer, J., Zerger, A., Gibbons, P., Stott, J., & Law, B. S. (2010). Tree decline and the future of Australian farmland biodiversity. Proceedings of the National Academy of Sciences USA, 107, 19597–19602. doi: 10.1073/pnas.1008476107.CrossRefGoogle Scholar
  79. Fischer, A. R. H., Tobi, H., & Ronteltap, A. (2011). When natural met social: a review of collaboration between the natural and social sciences. Interdisciplinary Science Reviews, 36, 341–358. doi: 10.1179/030801811X13160755918688.CrossRefGoogle Scholar
  80. Fitt, G. P. (2011). Critical issues in pest management for a future with sustainable biofuel cropping. Current Opinion in Environmental Sustainability, 3, 71–74. doi: 10.1016/j.cosust.2010.11.008.CrossRefGoogle Scholar
  81. Fitt, B. D. L., Fraaije, B. A., Chandramohan, P., & Shaw, M. W. (2011). Impacts of changing air composition on severity of arable crop disease epidemics. Plant Pathology, 60, 44–53. doi: 10.1111/j.1365-3059.2010.02413.x.CrossRefGoogle Scholar
  82. Fitter, A. (2012). Why plant science matters. New Phytologist, 193, 1–2. doi: 10.1111/j.1469-8137.2011.03995.x.PubMedCrossRefGoogle Scholar
  83. Fleischmann, F., Raidl, S., & Osswald, W. F. (2010). Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environmental Pollution, 158, 1051–1060. doi: 10.1016/j.envpol.2009.10.004.PubMedCrossRefGoogle Scholar
  84. Fletcher, J., Franz, D., & LeClerc, E. J. (2009). Healthy plants: necessary for a balanced ‘One Health’ concept. Veterinaria Italiana, 45, 79–95. Google Scholar
  85. Flood, J. (2010). The importance of plant health to food security. Food Security, 2, 215–231. doi: 10.1007/s12571-010-0072-5.CrossRefGoogle Scholar
  86. French, S., Levy-Booth, D., Samarajeewa, A., Shannon, K. E., Smith, J., & Trevors, J. T. (2009). Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World Journal of Microbiology and Biotechnology, 25, 1887–1900. doi: 10.1007/s11274-009-0107-2.CrossRefGoogle Scholar
  87. Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, 97, 1–20. doi: 10.1016/S0167-8809(03)00125-7.CrossRefGoogle Scholar
  88. Fuhrer, J., Beniston, M., Fischlin, A., Frei, Ch, Goyette, S., Jasper, K., et al. (2006). Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change, 79, 79–102. doi: 10.1007/s10584-006-9106-6.CrossRefGoogle Scholar
  89. Furstenau, C., Badeck, F. W., Lasch, P., Lexer, M. J., Lindner, M., Mohr, P., et al. (2007). Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. European Journal of Forest Research, 126, 225–239. doi: 10.1007/s10342-006-0114-x.CrossRefGoogle Scholar
  90. Gange, A. C., Gange, E. G., Mohammad, A. B., & Boddy, L. (2011). Host shifts in fungi caused by climate change? Fungal Ecology, 4, 184–190. doi: 10.1016/j.funeco.2010.09.004.CrossRefGoogle Scholar
  91. Ganley, R. J., Watt, M. S., Kriticos, D. J., Hopkins, A. J. M., & Manning, L. K. (2011). Increased risk of pitch canker to Australasia under climate change. Australasian Plant Pathology, 40, 228–237. doi: 10.1007/s13313-011-0033-2.CrossRefGoogle Scholar
  92. Garbelotto, M. (2008). Molecular analysis to study invasions by forest pathogens: examples from Mediterranean ecosystems. Phytopathologia Mediterranea, 47, 183–203.Google Scholar
  93. Garbelotto, M., & Pautasso, M. (2012). Impacts of exotic forest pathogens on Mediterranean ecosystems: four case studies European Journal of Plant Pathology, in press doi: 10.1007/s10658-011-9928-6
  94. Garbelotto, M., Linzer, L., Nicolotti, G., & Gonthier, P. (2010). Comparing the influences of ecological and evolutionary factors on the successful invasion of a fungal forest pathogen. Biological Invasions, 12, 943–957. doi: 10.1007/s10530-009-9514-4.CrossRefGoogle Scholar
  95. Garrett, K. A. (2008). Climate change and plant disease risk. In D. A. Relman, M. A. Hamburg, E. R. Choffnes, & A. Mack (Eds.), Global climate change and extreme weather events: understanding the contributions to infectious disease emergence (pp. 143–155). Washington, DC: National Academies Press.Google Scholar
  96. Garrett, K. A., & Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology, 89, 984–990. doi: 10.1094/PHYTO.1999.89.11.984.PubMedCrossRefGoogle Scholar
  97. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509. doi: 10.1146/annurev.phyto.44.070505.143420.PubMedCrossRefGoogle Scholar
  98. Garrett, K. A., Nita, M., De Wolf, E. D., Gomez, L., & Sparks, A. H. (2009). Plant pathogens as indicators of climate change. In T. Letcher (Ed.), Climate change: observed impacts on planet Earth (pp. 425–437). Dordrecht: Elsevier.Google Scholar
  99. Garrett, K. A., Forbes, G. A., Savary, S., Skelsey, P., Sparks, A. H., Valdivia, C., et al. (2011). Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathology, 60, 15–30. doi: 10.1111/j.1365-3059.2010.02409.x.CrossRefGoogle Scholar
  100. Geyer, J., Kiefer, I., Kreft, S., Chavez, V., Salafsky, N., Jeltsch, F., et al. (2011). Classification of climate-change-induced stresses on biological diversity. Conservation Biology, 25, 708–715. doi: 10.1111/j.1523-1739.2011.01676.x.PubMedCrossRefGoogle Scholar
  101. Ghini, R., Hamada, E., & Bettiol, W. (2008). Climate change and plant diseases. Scientia Agricola, 65, 98–107. doi: 10.1590/S0103-90162008000700015.CrossRefGoogle Scholar
  102. Ghini, R., Bettiol, W., & Hamada, E. (2011a). Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathology, 60, 122–132. doi: 10.1111/j.1365-3059.2010.02403.x.CrossRefGoogle Scholar
  103. Ghini, R., Hamada, E., Pedro Junior, M. J., & Goncalves, R. Rd. V. (2011b). Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathologica, 37, 85–93. doi: 10.1590/S0100-54052011000200001.CrossRefGoogle Scholar
  104. Golding, J., Güsewell, S., Kreft, H., Kuzevanov, V. Y., Lehvävirta, S., Parmentier, I., et al. (2010). Species-richness patterns of the living collections of the world’s botanic gardens: a matter of socio-economics? Annals of Botany, 105, 689–696. doi: 10.1093/aob/mcq043.PubMedCrossRefGoogle Scholar
  105. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838. doi: 10.1093/jxb/erp080.PubMedCrossRefGoogle Scholar
  106. Gross, A., Grünig, C. R., Queloz, V., & Holdenrieder, O. (2012). A molecular toolkit for population genetic investigations of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Forest Pathology, in press doi: 10.1111/j.1439-0329.2011.00751.x
  107. Grulke, N. E. (2011). The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytologist, 189, 8–11. doi: 10.1111/j.1469-8137.2010.03568.x.PubMedCrossRefGoogle Scholar
  108. Gurr, S., Samalova, M., & Fisher, M. (2011). The rise and rise of emerging infectious fungi challenges food security and ecosystem health. Fungal Biology Reviews, 25, 181–188. doi: 10.1016/j.fbr.2011.10.004.CrossRefGoogle Scholar
  109. Hakala, K., Hannukkala, A. O., Huusela-Veistola, E., Jalli, M., & Peltonen-Sainio, P. (2011). Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agricultural and Food Science, 20, 3–14. doi: 10.2137/145960611795163042.CrossRefGoogle Scholar
  110. Hannukkala, A. O. (2011). Examples of alien pathogens in Finnish potato production - their introduction, establishment and consequences. Agricultural and Food Science, 20, 42–61. doi: 10.2137/145960611795163024.CrossRefGoogle Scholar
  111. Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167–176. doi: 10.1111/j.1365-3059.2006.01451.x.CrossRefGoogle Scholar
  112. Haq, M., Taher Mia, M. A., Rabbi, M. F., & Ali, M. A. (2011). Incidence and severity of rice diseases and insect pests in relation to climate change. In R. Lal, M. V. K. Sivakumar, S. M. A. Faiz, A. H. M. M. Rahman, & K. R. Islam (Eds.), Climate change and food security in South Asia (pp. 445–457). Berlin: Springer. doi: 10.1007/978-90-481-9516-9_27.Google Scholar
  113. Harwood, T. D., Xu, X. M., Pautasso, M., Jeger, M. J., & Shaw, M. (2009). Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and P. kernoviae in the UK. Ecological Modelling, 220, 3353–3361.CrossRefGoogle Scholar
  114. Hawkes, C. V., Kivlin, S. N., Rocca, J. D., Huguet, V., Thomsen, M. A., & Suttle, K. B. (2011). Fungal community responses to precipitation. Global Change Biology, 17, 1637–1645. doi: 10.1111/j.1365-2486.2010.02327.x.CrossRefGoogle Scholar
  115. Hegerl, G. C., Hanlon, H., & Beierkuhnlein, C. (2011). Climate science: elusive extremes. Nature Geoscience, 4, 142–143. doi: :10.1038/ngeo1090.CrossRefGoogle Scholar
  116. Heyder, U., Schaphoff, S., Gerten, D., & Lucht, W. (2011). Risk of severe climate change impact on the terrestrial biosphere. Environmental Research Letters, 6, 034036. doi: :10.1088/1748-9326/6/3/034036.CrossRefGoogle Scholar
  117. Holdenrieder, O., Pautasso, M., Weisberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape processes: the challenge of landscape pathology. Trends in Ecology & Evolution, 19, 446–452. doi: 10.1016/j.tree.2004.06.003.CrossRefGoogle Scholar
  118. Holdenrieder, O., Pautasso, M., & Weisberg, P. J. (2008). Tree disease management in heterogeneous landscapes. Oral presentation at the 9th International Conference of Plant Pathology (ICPP 9—Health and Safe Food for Everybody), Torino, Italy, 24–29 August 2008.Google Scholar
  119. Horan, R. D., & Lupi, F. (2010). The economics of invasive species control and management: the complex road ahead. Resource and Energy Economics, 32, 477–482. doi: 10.1016/j.reseneeco.2010.07.001.CrossRefGoogle Scholar
  120. Ingram, J. S. I., Gregory, P. J., & Izac, A.-M. (2008). The role of agronomic research in climate change and food security policy. Agriculture, Ecosystems and Environment, 126, 4–12. doi: 10.1016/j.agee.2008.01.009.CrossRefGoogle Scholar
  121. Ingwell, L. L., & Preisser, E. L. (2011). Using citizen science programs to identify host resistance in pest-invaded forests. Conservation Biology, 25, 182–188. doi: 10.1111/j.1523-1739.2010.01567.x.PubMedCrossRefGoogle Scholar
  122. Jacobi, W. R., Crump, A., & Lundquist, J. E. (2011). Dissemination of forest health research information in the Rocky Mountains. Journal of Forestry, 109, 43–49.Google Scholar
  123. Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Science, 30, 125–176. doi: 10.1080/07352689.2011.554358.CrossRefGoogle Scholar
  124. Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change—the importance of long-term data sets. New Phytologist, 177, 8–11. doi: 10.1111/j.1469-8137.2007.02312.x.PubMedCrossRefGoogle Scholar
  125. Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 174, 279–297. doi: 10.1111/j.1469-8137.2007.02028.x.PubMedCrossRefGoogle Scholar
  126. Jeger, M., Pautasso, M., & Stack, J. (2011). Climate, globalization and trade: impacts on dispersal and invasion of fungal plant pathogens. In L. A. Olsen, D. A. Relman, E. R. Choffnes, & L. Pray (Eds.), Fungal diseases: an emerging challenge to human, animal and plant health (pp. 273–296). Washington, DC: Institute of Medicine of the National Academies.Google Scholar
  127. Jombart, T., Eggo, R. M., Dodd, P. J., & Balloux, F. (2011). Reconstructing disease outbreaks from genetic data: a graph approach. Heredity, 106, 383–390. doi: 10.1038/hdy.2010.78.PubMedCrossRefGoogle Scholar
  128. Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130. doi: 10.1016/j.virusres.2008.07.028.PubMedCrossRefGoogle Scholar
  129. Jung, T., Stukely, M. J. C., Hardy, G. E. S. J., White, D., Paap, T., Dunstan, W. A., et al. (2011). Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia, 26, 13–39. doi: 10.3767/003158511X557577.PubMedCrossRefGoogle Scholar
  130. Juroszek, P., & von Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60, 100–112. doi: 10.1111/j.1365-3059.2010.02410.x.CrossRefGoogle Scholar
  131. Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647–652. doi: 10.1038/nature09575.PubMedCrossRefGoogle Scholar
  132. Keller, R. P., Drake, J. M., Drew, M. B., & Lodge, D. M. (2011). Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions, 17, 93–102. doi: 10.1111/j.1472-4642.2010.00696.x.CrossRefGoogle Scholar
  133. King, J. N., David, A., Noshad, D., & Smith, J. (2010). A review of genetic approaches to the management of blister rust in white pines. Forest Pathology, 40, 292–313. doi: 10.1111/j.1439-0329.2010.00659.x.CrossRefGoogle Scholar
  134. Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. (2012). Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evolutionary Applications, in press doi: 10.1111/j.1752-4571.2011.00222.x
  135. Kliejunas, J. T., Geils, B. W., Glaeser, M. J., Goheen, E. M., Hennon, P., Kim, M.-S., et al. (2008). Climate and forest diseases of Western North America: a literature review. PSW-GTR, USDA FS, p. 44Google Scholar
  136. Klopfenstein, N. B., Kim, M.-S., Hanna, J. W., Richardson, B. A., & Lundquist, J. (2009). Approaches to predicting potential impacts of climate change on forest disease: an example with Armillaria root disease. USDA Forest Service, Rocky Mountain Research Station, RMRS-RP-76, pp. 16
  137. Körner, C. (2003). Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philosophical Transactions of the Royal Society London A, 361, 2023–2041. doi: 10.1098/rsta.2003.1241.CrossRefGoogle Scholar
  138. Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327, 1461–1462. doi: 10.1126/science.1186473.PubMedCrossRefGoogle Scholar
  139. Kozlov, M. V., & Zvereva, E. L. (2011). A second life for old data: global patterns in pollution ecology revealed from published observational studies. Environmental Pollution, 159, 1067–1075. doi: 10.1016/j.envpol.2010.10.028.PubMedCrossRefGoogle Scholar
  140. Kraj, W., Zarek, M., & Kowalski, T. (2012). Genetic variability of Chalara fraxinea, dieback cause of European ash (Fraxinus excelsior L.). Mycological Progress, in press doi: 10.1007/s11557-010-0724-z
  141. Kůdela, V. (2009). Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Protection Science, 45, S27–S32.Google Scholar
  142. Kulakowski, D., Bebi, P., & Rixen, C. (2011). The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss alps. Oikos, 120, 216–225. doi: 10.1111/j.1600-0706.2010.18726.x.CrossRefGoogle Scholar
  143. La Porta, N., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M., & Von Weissenberg, K. (2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology, 30, 177–195.Google Scholar
  144. Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences USA, 108, 3465–3472. doi: 10.1073/pnas.1100480108.CrossRefGoogle Scholar
  145. Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience, 61, 183–193. doi: 10.1525/bio.2011.61.3.4.CrossRefGoogle Scholar
  146. Logan, J. A., Régnière, J., & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1, 130–137. doi: 10.1890/1540-9295(2003) 001[0130:ATIOGW]2.0.CO;2.CrossRefGoogle Scholar
  147. Lonsdale, D., & Gibbs, J. N. (1995). Effects of climate change on fungal diseases of trees. In J. E. Frankland, N. Magan, & G. M. Gadd (Eds.), Fungi and environmental change (pp. 1–19). Cambridge: Cambridge University Press.Google Scholar
  148. Lonsdale, D., & Gibbs, J. (2002). Effects of climate change on fungal diseases of trees. (In M. Broadmeadow (Ed.) Climate change: impacts on UK forests (pp. 83–97). Forestry Commission Bulletin, Nr. 125.)Google Scholar
  149. Lonsdale, D., Pautasso, M., & Holdenrieder, O. (2008). Wood-decaying fungi in the forest: conservation needs and management options. European Journal of Forest Research, 127, 1–22. doi: 10.1007/s10342-007-0182-6.CrossRefGoogle Scholar
  150. Loustau, D., Ogee, J., Dufrene, E., Deque, M., Dupouey, J. L., Badeau, V., et al. (2007). Impacts of climate change on temperate forests and interaction with management. In P. H. Freer-Smith, M. S. J. Broadmeadow, & J. M. Lynch (Eds.), Forestry and climate change (pp. 243–250). Wallingford, UK: CABI.Google Scholar
  151. Lovett, G. M., Arthur, M. A., Weathers, K. C., & Griffin, J. M. (2010). Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems, 13, 1188–1200. doi: 10.1007/s10021-010-9381-y.CrossRefGoogle Scholar
  152. Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., et al. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 113–121. doi: 10.1111/j.1365-3059.2010.02414.x.CrossRefGoogle Scholar
  153. MacLeod, A., Pautasso, M., Jeger, M. J., & Haines-Young, R. (2010). Evolution of the international regulation of plant pests, plant health and challenges for the future. Food Security, 2, 49–70. doi: 10.1007/s12571-010-0054-7.CrossRefGoogle Scholar
  154. Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A., et al. (2011). Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130, 117–131. doi: 10.1007/s10658-010-9739-1.CrossRefGoogle Scholar
  155. Mahmuti, M., West, J. S., Watts, J., Gladders, P., & Fitt, B. D. L. (2009). Controlling crop disease contributes to both food security and climate change mitigation. International Journal of Agricultural Sustainability, 7, 189–202. doi: 10.3763/ijas.2009.0476.CrossRefGoogle Scholar
  156. Mann, M. E., Bradley, R. S., & Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787. doi: 10.1038/33859.CrossRefGoogle Scholar
  157. Manning, W. J., & von Tiedemann, A. (1995). Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environmental Pollution, 88, 219–245. doi: 10.1016/0269-7491(95)91446-R.PubMedCrossRefGoogle Scholar
  158. Marçais, B., & Desprez-Loustau, M. L. (2007). Le réchauffement climatique a-t-il un impact sur les maladies forestières? RenDez-Vous Techniques, 3, 47–52.Google Scholar
  159. Marçais, B., Bouhot-Delduc, L., & Le Tacon, F. (2000). Effets possibles des changements globaux sur les micro-organismes symbiotiques et pathogènes et les insectes ravageurs des forêts. Revue Forestière Française, 52, 99–118.CrossRefGoogle Scholar
  160. Margosian, M. L., Garrett, K. A., Hutchinson, J. M. S., & With, K. A. (2009). Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. BioScience, 59, 141–151. doi: 10.1525/bio.2009.59.2.7.CrossRefGoogle Scholar
  161. Matesanz, S., Escudero, A., & Valladares, F. (2009). Impact of three global change drivers on a Mediterranean shrub. Ecology, 90, 2609–2621. doi: 10.1890/08-1558.1.PubMedCrossRefGoogle Scholar
  162. Matesanz, S., Gianoli, E., & Valladares, F. (2010). Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 1206, 35–55. doi: 10.1111/j.1749-6632.2010.05704.x.PubMedCrossRefGoogle Scholar
  163. Matyssek, R., Wieser, G., Calfapietra, C., de Vries, W., Dizengremel, P., Ernst, D., et al. (2012). Forests under climate change and air pollution: gaps in understanding and future directions for research. Environmental Pollution, 160, 57–65. doi: 10.1016/j.envpol.2011.07.007.PubMedCrossRefGoogle Scholar
  164. McDonald-Madden, E., Runge, M. C., Possingham, H. P., & Martin, T. G. (2011). Optimal timing for managed relocation of species faced with climate change. Nature Climate Change, 1, 261–265. doi: 10.1038/nclimate1170.CrossRefGoogle Scholar
  165. McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K. F., & Stitt, M. (2011). The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology & Evolution, 26, 523–532. doi: 10.1016/j.tree.2011.06.003.CrossRefGoogle Scholar
  166. McElrone, A. J., Hamilton, J. G., Krafnick, A. J., Aldea, M., Knepp, R. G., & DeLucia, E. H. (2010). Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees. Environmental Pollution, 158, 108–114. doi: 10.1016/j.envpol.2009.07.029.PubMedCrossRefGoogle Scholar
  167. McKinney, L. V., Nielsen, L. R., Hansen, J. K., & Kjær, E. D. (2011). Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease. Heredity, 106, 788–797. doi: 10.1038/hdy.2010.119.PubMedCrossRefGoogle Scholar
  168. Médiène, S., Valantin-Morison, M., Sarthou, J.-P., de Tourdonnet, S., Gosme, M., Bertrand, M., et al. (2011). Agroecosystem management and biotic interactions: a review. Agronomy for Sustainable Development, 31, 491–514. doi: 10.1007/s13593-011-0009-1.CrossRefGoogle Scholar
  169. Milad, M., Schaich, H., Bürgi, M., & Konold, W. (2011). Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. Forest Ecology and Management, 261, 829–843. doi: 10.1016/j.foreco.2010.10.038.CrossRefGoogle Scholar
  170. Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications, 17, 2145–2151. doi: 10.1890/06-1715.1.PubMedCrossRefGoogle Scholar
  171. Mills, P., Dehnen-Schmutz, K., Ilbery, B., Jeger, M., Jones, G., Little, R., et al. (2011). Integrating natural and social science perspectives on plant disease risk, management and policy formulation. Philosophical Transactions of the Royal Society London B, 366, 2035–2044. doi: 10.1098/rstb.2010.0411.CrossRefGoogle Scholar
  172. Mistretta, P. A. (2002). Managing for forest health. Journal of Forestry, 100, 24–27.Google Scholar
  173. Moore, J. L., Rout, T. M., Hauser, C. E., Moro, D., Jones, M., Wilcox, C., et al. (2010). Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biological Conservation, 143, 1068–1078. doi: 10.1016/j.biocon.2010.01.019.CrossRefGoogle Scholar
  174. Moricca, S., & Ragazzi, A. (2009). Lusus naturae: cambiamenti climatici ed invasioni di parassiti vegetali modificano il territorio agro-forestale. Rivista Italiana di Agronomia, 3, S13–S17.Google Scholar
  175. Moslonka-Lefebvre, M., Finley, A., Dorigatti, I., Dehnen-Schmutz, K., Harwood, T., Jeger, M. J., et al. (2011). Networks in plant epidemiology: from genes to landscapes, countries and continents. Phytopathology, 101, 392–403. doi: 10.1094/PHYTO-07-10-0192.PubMedCrossRefGoogle Scholar
  176. Ndeffo Mbah, M. L., Forster, G. A., Wesseler, J. H., & Gilligan, C. A. (2010). Economically optimal timing for crop disease control under uncertainty: an options approach. Interface, 7, 1421–1428. doi: 10.1098/rsif.2010.0056.CrossRefGoogle Scholar
  177. Newton, A. C., Johnson, S. N., & Gregory, P. J. (2011). Implications of climate change for diseases, crop yields and food security. Euphytica, 179, 3–18. doi: 10.1007/s10681-011-0359-4.CrossRefGoogle Scholar
  178. Norton, G., & Taylor, M. (2010). What pest is that? Recent developments in digital pest diagnostics. Outlooks on Pest Management, 21, 236–238. doi: 10.1564/21oct11.CrossRefGoogle Scholar
  179. O’Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., et al. (2012). Radiative forcing of natural forest disturbances. Global Change Biology, in press doi: 10.1111/j.1365-2486.2011.02577.x
  180. Ogden, A. E., & Innes, J. (2007). Incorporating climate change adaptation considerations into forest management planning in the boreal forest. International Forestry Review, 9, 713–733. doi: 10.1505/ifor.9.3.713.CrossRefGoogle Scholar
  181. Østergård, H., Finckh, M. R., Fontaine, L., Goldringer, I., Hoad, S. P., Kristensen, K., et al. (2009). Time for a shift in crop production: embracing complexity through diversity at all levels. Journal of the Science of Food and Agriculture, 89, 1439–1445. doi: 10.1002/jsfa.3615.CrossRefGoogle Scholar
  182. Paajanen, R., Julkunen-Tiitto, R., Nybakken, L., Petrelius, M., Tegelberg, R., Pusenius, J., et al. (2011). Dark-leaved willow (Salix myrsinifolia) is resistant to three-factor (elevated CO2, temperature and UV-B-radiation) climate change. New Phytologist, 190, 161–168. doi: 10.1111/j.1469-8137.2010.03583.x.CrossRefGoogle Scholar
  183. Paoletti, E., Bytnerowicz, A., Andersen, C., Augustaitis, A., Ferretti, M., Grulke, N., et al. (2007). Impacts of air pollution and climate change on forest ecosystems - emerging research needs. TheScientificWorldJOURNAL, 7, 1–8. doi: 10.1100/tsw.2007.52.PubMedCrossRefGoogle Scholar
  184. Parks, C. G., & Bernier, P. (2010). Adaptation of forests and forest management to changing climate with emphasis on forest health: a review of science, policies and practices. Forest Ecology and Management, 259, 657–659. doi: 10.1016/S0378-1127(09)00903-7.CrossRefGoogle Scholar
  185. Paterson, R. R. M., & Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International, 43, 1902–1914. doi: 10.1016/j.foodres.2009.07.010.CrossRefGoogle Scholar
  186. Pautasso, M. (2012). Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of Zoology, in press doi: 10.1080/11250003.2011.627381
  187. Pautasso, M., Holdenrieder, O., & Stenlid, J. (2005). Susceptibility to fungal pathogens of forests differing in tree diversity. In M. Scherer-Lorenzen, Ch Koerner, & D. Schulze (Eds.), Forest diversity and function (pp. 263–289). Berlin: Springer. doi: 10.1007/3-540-26599-6_13.CrossRefGoogle Scholar
  188. Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., et al. (2010). Plant health and global change – some implications for landscape management. Biological Reviews, 85, 729–755. doi: 10.1111/j.1469-185X.2010.00123.x.PubMedGoogle Scholar
  189. Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., et al. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1, 467–471. doi: 10.1038/nclimate1293.CrossRefGoogle Scholar
  190. Perkins, L. B., Leger, E. A., & Nowak, R. S. (2011). Invasion triangle: an organizational framework for species invasion. Ecology & Evolution, 1, 610–625. doi: 10.1002/ece3.47.CrossRefGoogle Scholar
  191. Petrokofsky, G., Brown, N. D., Hemery, G. E., Woodward, S., Wilson, E., Weatherall, A., et al. (2010). A participatory process for identifying and prioritizing policy-relevant research questions in natural resource management: a case study from the UK forestry sector. Forestry, 83, 357–367. doi: 10.1093/forestry/cpq018.CrossRefGoogle Scholar
  192. Petter, F., Brunel, S., & Suffert, M. (2010). Pest risk analysis as applied to plant pathogens. In R. N. Strange & M. L. Gullino (Eds.), The role of plant pathology in food safety and food security (pp. 137–150). Berlin: Springer. doi: 10.1007/978-1-4020-8932-9_12.Google Scholar
  193. Phalan, B., Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2011). Minimising the harm to biodiversity of producing more food globally. Food Policy, 36, S62–S71. doi: 10.1016/j.foodpol.2010.11.008.CrossRefGoogle Scholar
  194. Pinkard, E. A., Battaglia, M., Bruce, J., Leriche, A., & Kriticos, D. J. (2010). Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. Forest Ecology and Management, 259, 839–847. doi: 10.1016/j.foreco.2009.06.027.CrossRefGoogle Scholar
  195. Pritchard, S. G. (2011). Soil organisms and global climate change. Plant Pathology, 60, 82–89. doi: 10.1111/j.1365-3059.2010.02405.x.CrossRefGoogle Scholar
  196. Quarles, W. (2007). Global warming means more pests. The IPM Practitioner, 29(9/10), 1–8.Google Scholar
  197. Quijas, S., Schmid, B., & Balvanera, P. (2010). Plant diversity enhances provision of ecosystem services: a new synthesis. Basic and Applied Ecology, 11, 582–593. doi: 10.1016/j.baae.2010.06.009.CrossRefGoogle Scholar
  198. Rebaudo, F., & Dangles, O. (2011). Coupled information diffusion–pest dynamics models predict delayed benefits of farmer cooperation in pest management programs. PLoS Computational Biology, 7, e1002222. doi: 10.1371/journal.pcbi.1002222.PubMedCrossRefGoogle Scholar
  199. Reganold, J. P., Jackson-Smith, D., Batie, S. S., Harwood, R. R., Kornegay, J. L., Bucks, D., et al. (2011). Transforming U.S. agriculture. Science, 332, 670–671. doi: 10.1126/science.1202462.PubMedCrossRefGoogle Scholar
  200. Régnière, J. (2012). Invasive species, climate change and forest health. In T. Schlichter & L. Montes (Eds.), Forests in development: a vital balance (pp. 27–37). Berlin: Springer. doi: 10.1007/978-94-007-2576-8_3.Google Scholar
  201. Rizzo, D. M., Meentemeyer, R. K., & Garbelotto, M. (2011). The emergence of Phytophthora ramorum in North America and Europe. In L. A. Olsen, D. A. Relman, E. R. Choffnes, & L. Pray (Eds.), Fungal diseases: an emerging challenge to human, animal and plant health (pp. 312–324). Washington, DC: Institute of Medicine of the National Academies.Google Scholar
  202. Robinet, C., Van Opstal, N., Baker, R., & Roques, A. (2011). Applying a spread model to identify the entry points from which the pine wood nematode, the vector of pine wilt disease, would spread most rapidly across Europe. Biological Invasions, 13, 2981–2995. doi: 10.1007/s10530-011-9983-0.CrossRefGoogle Scholar
  203. Rohr, J. R., Dobson, A. P., Johnson, P. T. J., Kilpatrick, A. M., Paull, S. H., Raffel, T. R., et al. (2011). Frontiers in climate change–disease research. Trends in Ecology & Evolution, 26, 270–277. doi: 10.1016/j.tree.2011.03.002.CrossRefGoogle Scholar
  204. Rohrs-Richey, J. K., Mulder, C. P. H., Winton, L. M., & Stanosz, G. (2011). Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress. New Phytologist, 189, 295–307. doi: 10.1111/j.1469-8137.2010.03472.x.PubMedCrossRefGoogle Scholar
  205. Roos, J., Hopkins, R., Kvarnheden, A., & Dixelius, C. (2010). The impact of global warming on plant diseases and insect vectors in Sweden. European Journal of Plant Pathology, 129, 9–19. doi: 10.1007/s10658-010-9692-z.CrossRefGoogle Scholar
  206. Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events. Implications for food production, plant diseases, and pests. Global Change & Human Health, 2, 90–104. doi: 10.1023/A:1015086831467.CrossRefGoogle Scholar
  207. Roy, B. A., Güsewell, S., & Harte, J. (2004). Response of plant pathogens and herbivores to a warming experiment. Ecology, 85, 2570–2581. doi: 10.1890/03-0182.CrossRefGoogle Scholar
  208. Rytkönen, A., Lilja, A., Drenkhan, R., Gaitnieks, T., & Hantula, J. (2011). First record of Chalara fraxinea in Finland and genetic variation among isolates sampled from Åland, mainland Finland, Estonia and Latvia. Forest Pathology, 41, 169–174. doi: 10.1111/j.1439-0329.2010.00647.x.CrossRefGoogle Scholar
  209. Salinari, F., Giosue, S., Tubiello, F. N., Rettori, A., Rossi, V., Spanna, F., et al. (2006). Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology, 12, 1299–1307. doi: 10.1111/j.1365-2486.2006.01175.x.CrossRefGoogle Scholar
  210. Savary, S., Mila, A., Willocquet, L., Esker, P., Carisse, O., & McRoberts, N. (2011a). Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology, 101, 696–709. doi: 10.1094/PHYTO-07-10-0183.PubMedCrossRefGoogle Scholar
  211. Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G., et al. (2011b). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95, 1204–1216. doi: 10.1094/PDIS-04-11-0316.CrossRefGoogle Scholar
  212. Scherm, H. (2004). Climate change: can we predict the impacts on plant pathology and pest management? Canadian Journal of Plant Pathology, 26, 267–273. doi: 10.1080/07060660409507143.CrossRefGoogle Scholar
  213. Seem, R. C. (2004). Forecasting plant disease in a changing climate: a question of scale. Canadian Journal of Plant Pathology, 26, 274–283. doi: 10.1080/07060660409507144.CrossRefGoogle Scholar
  214. Seidl, R., Fernandes, P. M., Fonseca, T. F., Gillet, F., Jönssong, A. M., Merganičová, K., et al. (2011). Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling, 222, 903–924. doi: 10.1016/j.ecolmodel.2010.09.040.CrossRefGoogle Scholar
  215. Shaw, M.W. (2009). Preparing for changes in plant diseases due to climate change. Plant Protection Science, 45, S3-S10.
  216. Shaw, M. W., & Osborne, T. M. (2011). Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60, 31–43. doi: 10.1111/j.1365-3059.2010.02407.x.CrossRefGoogle Scholar
  217. Siebold, M., & von Tiedemann, A. (2012). Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology, 5, 62–72. doi: 10.1016/j.funeco.2011.04.003.CrossRefGoogle Scholar
  218. Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779–790. doi: 10.1038/nrmicro2439.PubMedCrossRefGoogle Scholar
  219. Skelsey, P., Rossing, W. A. H., Kessel, G. J. T., & van der Werf, W. (2010). Invasion of Phytophthora infestans at the landscape level: how do spatial scale and weather modulate the consequences of spatial heterogeneity in host resistance? Phytopathology, 100, 1146–1161. doi: 10.1094/PHYTO-06-09-0148.PubMedCrossRefGoogle Scholar
  220. Steingröver, E. G., Geertsema, W., & van Wingerden, W. K. R. E. (2010). Designing agricultural landscapes for natural pest control: a transdisciplinary approach in the Hoeksche Waard (The Netherlands). Landscape Ecology, 25, 825–838. doi: 10.1007/s10980-010-9489-7.CrossRefGoogle Scholar
  221. Stenlid, J., Oliva, J., Boberg, J. B., & Hopkins, A. J. M. (2011). Emerging diseases in European forest ecosystems and responses in society. Forests, 2, 486–504. doi: 10.3390/f2020486.CrossRefGoogle Scholar
  222. Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. E., et al. (2011). Climate change and forest diseases. Plant Pathology, 60, 133–149. doi: 10.1111/j.1365-3059.2010.02406.x.CrossRefGoogle Scholar
  223. Sutherst, R. W., Constable, F., Finlay, K. J., Harrington, R., Luck, J., & Zalucki, M. P. (2011). Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews - Climate Change, 2, 220–237. doi: 10.1002/wcc.102.CrossRefGoogle Scholar
  224. Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2012). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, in press doi: 10.1016/j.agrformet.2011.09.002
  225. Thomas, K. (2010). Climate change and management of cool season grain legume crops. In S. S. Yadav, D. L. McNeil, R. Redden, & S. A. Patil (Eds.), Impact of climate change on diseases of cool season grain legume crops (pp. 99–113). Berlin: Springer. doi: 10.1007/978-90-481-3709-1_6.CrossRefGoogle Scholar
  226. Thompson, S., Alvarez-Loayza, P., Terborgh, J., & Katul, G. (2010). The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: a dynamical systems analysis. Journal of Ecology, 98, 1434–1446. doi: 10.1111/j.1365-2745.2010.01726.x.CrossRefGoogle Scholar
  227. Tomback, D. F., & Achuff, P. (2010). Blister rust and western forest biodiversity: ecology, values and outlook for white pines. Forest Pathology, 40, 186–225. doi: 10.1111/j.1439-0329.2010.00655.x.CrossRefGoogle Scholar
  228. Truscott, J. E., & Gilligan, C. A. (2003). Response to a deterministic epidemiological system to a stochastically varying environment. Proceedings of the National Academy of Sciences USA, 100, 9067–9072. doi: 10.1073/pnas.1436273100.CrossRefGoogle Scholar
  229. Tsui, C. K. M., Roe, A. D., El-Kassaby, Y. A., Rice, A. R., Alamouti, S. M., Sperling, F. A. H., et al. (2012). Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Molecular Ecology, 21, 71–86. doi: 10.1111/j.1365-294X.2011.05366.x.PubMedCrossRefGoogle Scholar
  230. Tubby, K. V., & Webber, J. F. (2010). Pests and diseases threatening urban trees under a changing climate. Forestry, 83, 451–459. doi: 10.1093/forestry/cpq027.CrossRefGoogle Scholar
  231. Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–1363. doi: 10.1111/j.1461-0248.2008.01250.x.PubMedCrossRefGoogle Scholar
  232. Venette, R. C. (2009). Implication of global climate change on the distribution and activity of Phytophthora ramorum. In: K. McManus, & K. W. Gottschalk (Eds.) Proceedings 20th U.S. Department of Agriculture interagency research forum on invasive species 2009 (pp. 58–59.) USDA FS, GTR NRS-P-51.Google Scholar
  233. Venette, R. C., Kriticos, D. J., Magarey, R. D., Koch, F. H., Baker, R. H. A., Worner, S. P., et al. (2010). Pest risk maps for invasive alien species: a roadmap for improvement. BioScience, 60, 349–362. doi: 10.1525/bio.2010.60.5.5.CrossRefGoogle Scholar
  234. Vettraino, A. M., Brasier, C. M., Brown, A. V., & Vannini, A. (2011). Phytophthora himalsilva sp. nov. an unusually phenotypically variable species from a remote forest in Nepal. Fungal Biology, 115, 275–287. doi: 10.1016/j.funbio.2010.12.013.PubMedCrossRefGoogle Scholar
  235. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. doi: 10.1038/416389a.PubMedCrossRefGoogle Scholar
  236. Watt, M. S., Stone, J. K., Hood, I. A., & Palmer, D. J. (2010). Predicting the severity of Swiss needle cast on Douglas-fir under current and future climate in New Zealand. Forest Ecology and Management, 260, 2232–2240. doi: 10.1016/j.foreco.2010.09.034.CrossRefGoogle Scholar
  237. Watt, M. S., Ganley, R. J., Kriticos, D. J., & Manning, L. K. (2011). Dothistroma needle blight and pitch canker: the current and future potential distribution of two important diseases of Pinus species. Canadian Journal of Forest Research, 41, 412–424. doi: 10.1139/X10-204.CrossRefGoogle Scholar
  238. Webber, J. (2010). Pest risk analysis and invasion pathways for plant pathogens. New Zealand Journal of Forestry Science, 40, S45–S56.Google Scholar
  239. West, J. S., Holdgate, S., Townsend, J. A., Edwards, S. G., Jennings, P., & Fitt, B. D. L. (2012). Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecology, 5, 53–61. doi: 10.1016/j.funeco.2011.03.003.CrossRefGoogle Scholar
  240. Wingfield, M. J., Slippers, B., & Wingfield, B. D. (2010). Novel associations between pathogens, insects and tree species threaten world forests. New Zealand Journal of Forestry Science, 40, 95–103.Google Scholar
  241. Witzell, J., Berglund, M., & Rönnberg, J. (2011). Does temperature regime govern the establishment of Heterobasidion annosum in Scandinavia? International Journal of Biometeorology, 55, 275–284. doi: 10.1007/s00484-010-0333-1.PubMedCrossRefGoogle Scholar
  242. Woods, A. (2011). Is the health of British Columbia’s forests being influenced by climate change? If so, was this predictable? Canadian Journal of Plant Pathology, 33, 117–126. doi: 10.1080/07060661.2011.563908.CrossRefGoogle Scholar
  243. Woods, A. J., Heppner, D., Kope, H. H., Burleigh, J., & Maclauchlan, L. (2010). Forest health and climate change: a British Columbia perspective. The Forestry Chronicle, 86, 412–422.Google Scholar
  244. Xu, X. M., Harwood, T. D., Pautasso, M., & Jeger, M. J. (2009). Spatio-temporal analysis of an invasive plant pathogen (Phytophthora ramorum) in England and Wales. Ecography, 32, 504–516. doi: 10.1111/j.1600-0587.2008.05597.x.CrossRefGoogle Scholar
  245. Xu, X. M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice: a review. Phytopathology, 101, 1024–1031. doi: 10.1094/PHYTO-08-10-0216.PubMedCrossRefGoogle Scholar
  246. Yemshanov, D., McKenney, D. W., Pedlar, J. H., Koch, F. H., & Cook, D. (2009). Towards an integrated approach to modelling the risks and impacts of invasive forest species. Environmental Reviews, 17, 163–178. doi: 10.1139/A09-007.CrossRefGoogle Scholar
  247. Yousefpour, R., Jacobsen, J. B., Thorsen, B. J., Meilby, H., Hanewinkel, M., & Oehler, K. (2012) A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Annals of Forest Science, in press doi: 10.1007/s13595-011-0153-4
  248. Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., et al. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722. doi: 10.1038/35021046.PubMedCrossRefGoogle Scholar
  249. Ziska, L. H., & Runion, G. B. (2007). Future weed, pest, and disease problems for plants. In P. C. D. Newton, R. A. Carran, G. R. Edwards, & P. A. Niklaus (Eds.), Agroecosystems in a changing climate (pp. 261–287). Boca Raton: CRC Press.Google Scholar
  250. Zocca, A., Zanini, C., Aimi, A., Frigimelica, G., La Porta, N., & Battisti, A. (2008). Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy. Acta Oecologica, 33, 307–313. doi: 10.1016/j.actao.2008.01.004.CrossRefGoogle Scholar
  251. Zvereva, E. L., & Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta-analysis. Global Change Biology, 12, 27–41. doi: 10.1111/j.1365-2486.2005.01086.x.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Marco Pautasso
    • 1
  • Thomas F. Döring
    • 2
  • Matteo Garbelotto
    • 3
  • Lorenzo Pellis
    • 4
  • Mike J. Jeger
    • 5
  1. 1.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRSMontpellierFrance
  2. 2.The Organic Research CentreHamstead MarshallUK
  3. 3.Department of Environmental Science, Policy and Management, Ecosystem Sciences DivisionUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Infectious Disease EpidemiologyImperial College LondonLondonUK
  5. 5.Division of BiologyImperial College LondonAscotUK

Personalised recommendations