European Journal of Plant Pathology

, Volume 135, Issue 3, pp 455–470 | Cite as

Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks



Plant architectural traits have been reported to impact pest and disease, i.e., attackers, incidence on several crops and to potentially provide alternative, although partial, solutions to limit chemical applications. In this paper, we introduce the major concepts of plant architecture analysis that can be used for investigating plant interactions with attacker development. We briefly review how primary growth, branching and reiteration allow the plant to develop its 3D structure which properties may allow it (or not) to escape or survive to attacks. Different scales are considered: (i) the organs, in which nature, shape and position may influence pest and pathogen attack and development; (ii) the individual plant form, especially the spatial distribution of leaves in space which determines the within-plant micro-climate and the shoot distribution, topological connections which influence the within-plant propagation of attackers; and (iii) the plant population, in which density and spatial arrangement affect the micro-climate gradients within the canopy and may lead to different risks of propagation from plant to plant. At the individual scale, we show how growth, branching and flowering traits combine to confer to every plant species an intrinsic architectural model. However, these traits vary quantitatively between genotypes within the species. In addition, we analyze how they can be modulated throughout plant ontogeny and by environmental conditions, here considered lato sensu, i.e. including climatic conditions and manipulations by humans. Examples from different plant species with various architectural types, in particular for wheat and apple, are provided to draw a comprehensive view of possible plant protection strategies which could benefit from plant architectural traits, their genetic variability as well as their plasticity to environmental conditions and agronomic manipulations. Associations between species and/or genotypes having different susceptibility and form could also open new solutions to improve the tolerance to pest and disease at whole population scale.


Growth Branching Reiteration Flowering transition Ontogeny Pest Disease 


  1. Ando, K., Grumet, R., Terpstra, K., Kelly, J. D. (2007). Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2, N° 26.
  2. Atger, C., & Edelin, C. (1994). Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Canadian Journal of Botany, 72, 963–975.CrossRefGoogle Scholar
  3. Baccar, R., Fournier, C., Dornbusch, T., Andrieu, B., Gouache, D., & Robert, C. (2011). Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model. Annals of Botany, 108, 1179–1194.PubMedCrossRefGoogle Scholar
  4. Ballaré, C. L. (1999). Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends in Plant Science, 4, 97–102.PubMedCrossRefGoogle Scholar
  5. Barthélémy, D., & Caraglio, Y. (2007). Plant architecture: a dynamic, multilevel and comprehensive approach of plant form, structure and ontogeny. Annals of Botany, 99, 375–407.PubMedCrossRefGoogle Scholar
  6. Bassette, C., & Bussière, F. (2008). Partitioning of splash and storage during raindrop impacts on banana leaves. Agricultural and Forest Meteorology, 148, 991–1004.CrossRefGoogle Scholar
  7. Bedimo, J., Aubert, M., Bieysse, D., Njiayouom, I., Deumeni, J. P., Cilas, C., & Notteghem, J. L. (2007). Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. European Journal of Plant Pathology, 119, 391–400.CrossRefGoogle Scholar
  8. Bell, A. D. (1991). Plant form, an illustrated guide to flowering plant morphology. Oxford University Press.Google Scholar
  9. Berthelot, J., Andrieu, B., & Martre, P. (2012). Light-nitrogen relationships within reproductive wheat canopy are modulated by plant modular organization. European Journal of Agronomy, 42, 11–21.CrossRefGoogle Scholar
  10. Bodin-Ferri, M., Costes, E., Quiot, J. B., & Dosba, F. (2002). Systemic spread of plum pox potyvirus (PPV) in Mariana plum GF 8-1 in relation to shoot growth. Plant Pathology, 51, 124–148.Google Scholar
  11. Bonhomme, R. (2000). Bases and limits to using ‘’ units. European Journal of Agronomy, 13, 1–10.CrossRefGoogle Scholar
  12. Borchert, R., & Honda, H. (1985). Control of development in the bifurcating branch system of Tabeduia rosea: a computer simulation. Botanical Gazette, 145, 184–195.CrossRefGoogle Scholar
  13. Boss, P. K., Bastow, R. M., Mylne, J. S., & Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell, 16, S18–S31.PubMedCrossRefGoogle Scholar
  14. Bruckler, L., Lafolie, F., Doussan, C., & Bussières, F. (2004). Modeling soil-root water transport with non-uniform water supply and heterogeneous root distribution. Plant and Soil, 260, 205–224.CrossRefGoogle Scholar
  15. Bruschi, P., Grossoni, P., & Bussotti, F. (2003). Within- and among-tree variation in leaf morphology of Quercus petraea matt. liebl. natural populations. Trees- structure and function, 17, 164–172.Google Scholar
  16. Callaway, R. M., Pennings, S. C., & Richards, C. L. (2003). Phenotypic plasticity and interactions among plants. Ecology, 84, 1115–1128.CrossRefGoogle Scholar
  17. Calonnec, A., Cartolaro, P., Naulin, J. M., Bailey, D., & Langlais, M. (2008). A host-pathogen simulation model: powdery mildew of grapevine. Plant Pathology, 57, 493–508.CrossRefGoogle Scholar
  18. Carter, C., & Thornburg, R. W. (2004). Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 9, 320–324.PubMedCrossRefGoogle Scholar
  19. Casal, J. J., Fankhauser, C., Coupland, G., & Blazquez, M. A. (2004). Signalling for developmental plasticity. Trends in Plant Science, 9, 309–314.PubMedCrossRefGoogle Scholar
  20. Casas, J., & Djemai, I. (2002). Plant canopy architecture and multitrophic interactions. In: T. Tscharnke & B. Hawkins (Eds). Multitrophic interactions. Cambridge University Press.Google Scholar
  21. Champagnat, P. (1954). Recherches sur les rameaux anticipés des végétaux ligneux. Revue de Cytologie et de Biologie Végétales X 1–51.Google Scholar
  22. Champagnat, P. (1989). Rest and activity in vegetative buds of trees. Annals of Science, 46, 9–26.CrossRefGoogle Scholar
  23. Chelle, M. (2005). Phylloclimate or the climate perceived by individual plant organs: what is it? How to model it? What for? New Phytologist, 166, 781–790.PubMedCrossRefGoogle Scholar
  24. Cieslak, M., Seleznyova, A. N., Prusinkiewicz, P., Hanan, J. (2011). Towards aspect-oriented functional-structural plant modelling. Annals of Botany, 108, SI: 1025–104.1.Google Scholar
  25. Cline, M. G. (2000). The role of hormons and apical dominance. New approaches to an old problem in plant development. Physiologia Plantarum, 90, 230–237.CrossRefGoogle Scholar
  26. Costes, E., & Guédon, Y. (2012). Deciphering the ontogeny of a sympodial tree. Trees- Structure and functions, 26, 865–879.CrossRefGoogle Scholar
  27. Costes, E., Sinoquet, H., Kelner, J. J., & Godin, C. (2003). Exploring within-tree architectural development of two apple cultivars over 6 years. Annals of Botany, 91, 91–104.PubMedCrossRefGoogle Scholar
  28. Costes, E., Lauri, P. E., & Régnard, J. L. (2006). Tree architecture and production. Horticultural Reviews, 32, 1–60.Google Scholar
  29. Costes, E., Smith, C., Renton, M., Guédon, Y., Prusinkiewivz, P., Godin, C., & Mapple, T. (2008). Simulation of apple tree development using mixed statistical and biomechanical models. Functional Plant Biology, 35, 936–950.CrossRefGoogle Scholar
  30. Crabbé, J. (1987). Aspects particuliers de la morphogénèse caulinaire des végétaux ligneux et introduction à leur étude quantitative. IRSIA (Institut pour l’encouragement de la recherche scientifique pour l’industrie et l’agriculture) Eds. Bruxelles. Belgique.Google Scholar
  31. Danjon, F., & Reubens, B. (2008). Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and Soil, 303, 1–34.CrossRefGoogle Scholar
  32. De Wit, I., Keulemans, J., & Cook, N. C. (2002). Architectural analysis of 1-year-old apple seedlings according to main shoot growth and sylleptic branching characteristics. Trees- Structure and Functions, 16, 473–478.CrossRefGoogle Scholar
  33. Didelot, F., Brun, L., & Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology, 56, 1014–1022.CrossRefGoogle Scholar
  34. Dornbush, T., Baccar, R., Watt, J., Hillier, J., Bertheloot, J., Fournier, C., & Andrieu, B. (2011). Plasticity of winter wheat modulated by sowing date, plant population density and nitrogen fertilisation: dimensions and size of leaf blades, sheaths and internodes in relation to their position on a stem. Field Crops Research, 121, 116–124.CrossRefGoogle Scholar
  35. Dorr, G., Hanan, J., Adkins, S., Hewitt, A., O'Donnell, C., & Noller, B. (2008). Spray deposition on plant surfaces: a modelling approach. Functional Plant Biology, 35, 988–996.CrossRefGoogle Scholar
  36. Doust, A. N. (2007). Grass architecture: genetic and environmental control of branching. Current Opinion in Plant Biology, 10, 21–25.PubMedCrossRefGoogle Scholar
  37. Erb, M., Lenk, C., Degenhardt, J., & Turlings, T. C. J. (2009). The underestimated role of roots in defense against leaf attackers. Trends in Plant Science, 14, 653–659.PubMedCrossRefGoogle Scholar
  38. Evans, M. M. S., & Poethig, R. S. (1995). Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiology, 108, 475–487.PubMedCrossRefGoogle Scholar
  39. Evers, J. B., Vos, J., Chelle, M., Andrieu, B., Fournier, C., & Struik, P. C. (2007). Simulating the effects of localized red / far-red ratio on tillering in spring wheat (Triticum aestivum L.) using a 3D virtual plant model. New Phytologist, 176, 325–336.PubMedCrossRefGoogle Scholar
  40. Evers, J. B., van der Kro, A. R., Vos, J., & Struick, P. C. (2011). Understanding shoot branching by modelling form and function. Trends in Plant Science, 16, 464–467.PubMedCrossRefGoogle Scholar
  41. Ferrandino, F. J. (2008). Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores. Phytopathology, 98, 492–503.PubMedCrossRefGoogle Scholar
  42. Finckh, M., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C., & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20, 813–837.CrossRefGoogle Scholar
  43. Forshey, C. G., Elfving, D. C., Stebbins, R. L. (1992). Training and pruning apple and pear trees. Alexandria (Virginia, USA). American Society for Horticultural Science.Google Scholar
  44. Fournier, C., & Andrieu, B. (1999). ADEL-maize: an L-system based model for the integration of growth processes from the organ to the canopy. Application to regulation of morphogenesis by light availability. Agronomie, 19, 313–327.CrossRefGoogle Scholar
  45. Fumey, D., Lauri, P. E., Guédon, Y., Godin, C., & Costes, E. (2011). How young trees cope with the removal of whole or part of shoots: an analysis of local and distant reactions to pruning in 1-year-old apple trees. American Journal of Botany, 98, 1737–1751.PubMedCrossRefGoogle Scholar
  46. Gingras, D., & Boivin, G. (2002). Effect of plant structure, host density and foraging duration on host finding by Trichogramma evanescens (Hymenoptera: Trichogrammatidae). Environmental Entomology, 31, 1153–1157.CrossRefGoogle Scholar
  47. Godin, C., & Caraglio, Y. (1998). A multiscale model of plant topological structures. Journal of Theoretical Biology, 191, 1–46.PubMedCrossRefGoogle Scholar
  48. Godin, C., Costes, E., & Sinoquet, H. (1999). A method for describing plant architecture which integrates topology and geometry. Annals of Botany, 84, 343–357.CrossRefGoogle Scholar
  49. Godin, C., Costes, E., & Sinoquet, H. (2005). Plant architecture modelling—virtual plants and complex systems. In C. Turnbull (Ed.), Plant architecture and its manipulation (pp. 238–287). UK: Blackwell Publishing.Google Scholar
  50. Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun E. A., Pillot, J. P., Letisse, F., Matusova, R., Danoun, S., Portais, J. C., Bouwmeester, H., Bécard, G., Beveridge, C. A., Rameau, C., Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature 11, 455(7210), 189–94.Google Scholar
  51. Grechi, I., Sauge, M. H., Sauphanor, B., Hilgert, N., Senoussi, R., & Lescourret, F. (2008). How does winter pruning affect peach tree—Myzus persicae interactions? Entomology Experimental and Applied, 128, 369–379.CrossRefGoogle Scholar
  52. Gruntman, M., & Novoplansky, A. (2011). Ontogenetic contingency of tolerance mechanisms in response to apical damage. Annals of Botany, 108, 965–973.PubMedCrossRefGoogle Scholar
  53. Guédon, Y., Bathélémy, D., Caraglio, Y., & Costes, E. (2001). Pattern analysis in branching and axillary flowering sequences. Journal of Theoretical Biology, 212, 481–520.PubMedCrossRefGoogle Scholar
  54. Guédon, Y., Caraglio, Y., Heuret, P., Lebarbier, E., & Meredieu, C. (2007). Analyzing growth components in trees. Journal of Theoretical Biology, 248, 418–447.PubMedCrossRefGoogle Scholar
  55. Guitton, B., Kelner, J. J., Velasco, R., Gardiner, S., Chagné, D., & Costes, E. (2012). Genetic control of biennal bearing in apple. Journal of Experimental Botany, 30, 1–19.Google Scholar
  56. Hackett, W. P. (1985). Juvenility, maturation and rejuvenation in woody plants. In Janick, J., Ed. Horticultural reviews, 7, 109–115.Google Scholar
  57. Hallé, F., & Ng, F. S. P. (1981). Crown construction in mature Dipterocarp trees. Malaysian Forester, 44, 222–223.Google Scholar
  58. Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (1978). Tropical trees and forests. Berlin: Springer.CrossRefGoogle Scholar
  59. Hanan, J., Prunsinkiewicz, P., Zalucki, M., & Skirvin, D. (2002). Simulation of insect movement with respect to plant architecture and morphogenesis. Computers and Electronics in Agriculture, 35, 255–269.CrossRefGoogle Scholar
  60. Hanba, Y. T., Kogami, H., & Terashima, I. (2002). The effect of growth irradiance on leaf anatomy and photosynthesis in acer species differing in light demand. Plant, Cell & Environment, 25, 1021–1030.CrossRefGoogle Scholar
  61. Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153–187.CrossRefGoogle Scholar
  62. Hu, D., & Scorza, R. (2009). Analysis of the ‘A72’ peach tree growth habit and its inheritance in progeny obtained from crosses of ‘A72’ with columnar peach trees. Journal of the American Society for Horticultural Science, 134, 236–243.Google Scholar
  63. Izaguirre, M. M., Mazza, C. A., Biondini, M., Baldwin, I. T., & Ballare, C. L. (2006). Remote sensing of future competitors: impacts on plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 103, 187170–187174.CrossRefGoogle Scholar
  64. Kang, M. Z., Heuvelink, E., Carvalho, S. M. P., & de Reffye, P. (2012). A virtual plant that responds to the environment like a real one: the case for chrysanthemum. New Phytologist, 195, 384–395.PubMedCrossRefGoogle Scholar
  65. Kelly, D., & Sork, V. L. (2002). Mast seeding in perennial plants: why, how, where? Annual Review of Ecology and Systematics, 33, 427–447.CrossRefGoogle Scholar
  66. Kiær, L. P., Skovgaard, I. M., & Østergård, H. (2009). Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Research, 114, 361–373.CrossRefGoogle Scholar
  67. Kührt, U., Samietz, J., Höhn, H., & Dorn, S. (2006). Modelling the phenology of codling moth: influence of habitat and thermoregulation. Agriculture, Ecosystems and Environment, 117, 29–38.CrossRefGoogle Scholar
  68. Lachaud, S., Catesson, A. M., & Bonnemain, J. L. (1999). Structure and functions of the vascular cambium. Compte-rendus de l’Académie des Sciences, série III- Sciences de la Vie-Life Sciences, 322, 633–650.Google Scholar
  69. Lang, G. A., Early, J. D., Martin, G. C., & Darnell, R. L. (1987). Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience, 22, 371–377.Google Scholar
  70. Langellotto, G. A., & Denno, R. F. (2004). Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 139, 1–10.PubMedCrossRefGoogle Scholar
  71. Lapins, K. O. (1974). Spur type growth habit in 60 apple progenies. Journal of the American Society for Horticultural Science, 99, 568–572.Google Scholar
  72. Lauri, P. É., & Térouanne, É. (1991). Elements for a morphometric approach to plant-growth and flowering—case of tropical species in the Leeuwenberg model. Canadian Journal of Botany, 69, 2095–2112.CrossRefGoogle Scholar
  73. Lauri, P. É., & Térouanne, É. (1995). Analyse de la croissance primaire de rameaux de pommier (Malus x domestica Borkh.) au cours d’une saison de végétation. Canadian Journal of Botany, 73, 1471–1489.CrossRefGoogle Scholar
  74. Lauri, P. É., Térouanne, É., Lespinasse, J. M., Regnard, J. L., & Kelner, J. J. (1995). Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years—an approach to regulation of fruit bearing. Scientia Horticulturae, 64, 264–281.CrossRefGoogle Scholar
  75. Lawton, J. H. (1983). Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology, 28, 23–39.CrossRefGoogle Scholar
  76. Leca, A., Parisi, L., Lacointe, A., & Saudreau, M. (2011). Comparison of Penman-Monteith and non-linear energy balance approaches for estimating leaf wetness duration and apple scab infection. Agricultural and Forest Meteorology, 151, 1158–1162.CrossRefGoogle Scholar
  77. Lecompte, F., Ozier-Lafontaine, H., & Pages, L. (2001). The relationships between static and dynamic variables in the description of root growth. Consequences for field interpretation of rooting variability. Plant and Soil, 236, 19–31.CrossRefGoogle Scholar
  78. Leyser, O. (2009). The control of shoot branching: an example of plant information processing. Plant, Cell & Environment, 32, 694–703.CrossRefGoogle Scholar
  79. Lindenmayer, A. (1968). Mathematical models for cellular interaction in development, part I and II. Journal of Theoretical Biology, 18, 280–315.PubMedCrossRefGoogle Scholar
  80. Liu, G., & Thornburg, R. W. (2012). Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. The Plant Journal, 70, 377–388.PubMedCrossRefGoogle Scholar
  81. Lockard, R. G., & Schneider, G. W. (1981). Stock and scion growth relationships and the dwarfing mechanism in apple. In: J. Janick Ed. Horticultural Reviews, 3, 315–75.Google Scholar
  82. Lopez, G., Favreau, R. R., Smith, C., Costes, E., Prusinkiewicz, P., & DeJong, T. M. (2008). Integrating simulation of architectural development and source-sink behaviour of peach trees by incorporating Markov models and physiological organ functions sub-models into L-Peach. Functional Plant Biology, 35, 761–771.CrossRefGoogle Scholar
  83. Louarn, G., Andrieu, B., & Giauffret, C. (2010). A size-mediated effect can compensate for transient chilling stress affecting maize (Zea mays) leaf extension. New Phytologist, 187, 106–118.PubMedCrossRefGoogle Scholar
  84. Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., & Coker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46, 126–138.CrossRefGoogle Scholar
  85. MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology and Management. Cambridge University Press.Google Scholar
  86. Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., Rapidel, B., de Tourdonnet, S., & Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29, 43–62.CrossRefGoogle Scholar
  87. Marquis, R. J. (1996). Plant architecture, sectoriality and plant tolerance to herbivores. Vegetatio, 127, 85–97.CrossRefGoogle Scholar
  88. Monselise, S. P., & Goldschmidt, E. E. (1982). Alternate bearing in fruit trees. Horticultural Reviews, 4, 128–173.Google Scholar
  89. Moulia, B., & Fournier, M. (2009). The power and control of gravitropic movements in plants: a biomechanical and systems biology view. Journal of Experimental Botany, 60, 461–486.PubMedCrossRefGoogle Scholar
  90. Moulia, B., Loup, C., Chartier, M., Allirand, J. M., & Edelin, C. (1999). Dynamics of architectural development of isolated plants of maize (Zea mays L.), in a non-limiting environment: the branching potential of modern maize. Annals of Botany, 84, 645–656.CrossRefGoogle Scholar
  91. Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell, 14, S111–S130.PubMedGoogle Scholar
  92. Mundt, C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.PubMedCrossRefGoogle Scholar
  93. Nanda, R., Bhargava, S. C., & Rawson, H. M. (1995). Effect of sowing date on rates of leaf appearance, final leaf numbers and areas in Brassica campestris, B. juncea, B. napus & B. carinata. Field Crops Research, 42, 125–134.CrossRefGoogle Scholar
  94. Ney, B., Bancal, M. O., Bancal, P., Bingham, I. J., Foulkes, J., Gouache, D., Paveley, N., & Smith, J. (2012). Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. European Journal of Plant Pathology, 1–20.Google Scholar
  95. Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692.PubMedCrossRefGoogle Scholar
  96. Nozeran, R. (1984). Integration of organismal development. In P. W. Barlow & D. J. Carr (Eds.), Positional controls in plant development (pp. 375–401).Google Scholar
  97. Oldeman, R. A. A. (1974). L’architecture de la forêt guyanaise. Mémoires 73, Orstom, Paris, France.Google Scholar
  98. Orians, C. M., & Jones, C. G. (2001). Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. Oikos, 94, 493–504.CrossRefGoogle Scholar
  99. Pagès, L. (2002) Modelling root system architecture. In: Weisel, Y. , Eshel, A. , Kafkafi, U. Eds Plant roots: the hidden half. (pp 175–186) 3rd edn. New York.Google Scholar
  100. Pagès, L., Asseng, S., Pellerin, S., & Diggle, A. (2000). Modelling root system growth and architecture. In A. L. Smit et al. (Eds.), Root methods, a handbook (pp. 113–146). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  101. Parent, B., Turc, O., Gibon, Y., Stitt, M., & Tardieu, F. (2010). Modelling temperature-compensated physiological rates, based on the coordination of responses to temperature of developmental processes. Journal of Experimental Botany, 61, 2057–2069.PubMedCrossRefGoogle Scholar
  102. Poethig, R. S. (1990). Phase change and the regulation of shoot morphogenesis in plants. Science, 250, 923–930.PubMedCrossRefGoogle Scholar
  103. Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., & Godin, C. (2008). OpenAlea: a visual programming and component-based software platform for plant modelling. Functional Plant Biology, 35, 751–760.CrossRefGoogle Scholar
  104. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., & Weis, A. E. (1980). Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11, 41–65.CrossRefGoogle Scholar
  105. Prioul, S., Frankewitz, A., Deniot, G., Morin, G., & Barangeret, A. (2004). Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theoretical and Applied Genetics, 108, 1322–1334.PubMedCrossRefGoogle Scholar
  106. Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. New York: Springer Verlag.CrossRefGoogle Scholar
  107. Randlkofer, B., Obermaier, E., Casas, J., & Meiners, T. (2010). Connectivity counts: disentangling effects of vegetation structure elements on the searching movement of a parasitoid. Ecological Entomology, 35, 446–455.Google Scholar
  108. Renton, M., Guédon, Y., Godin, C., & Costes, E. (2006). Similarities and gradients in growth unit branching patterns during tree ontogeny based on a stochastic approach in ‘Fuji’ apple trees. Journal of Experimental Botany, 57, 3131–3143.PubMedCrossRefGoogle Scholar
  109. Riihimäki, J., Vehviläinen, H., Kaitaniemi, P., & Koricheva, J. (2006). Host tree architecture mediates the effect of predators on herbivore survival. Ecological Entomology, 31, 227–235.CrossRefGoogle Scholar
  110. Robert, C., Bancal, M. O., & Lannou, C. (2004). Wheat leaf rust uredospore production on adult plants: influence of leaf nitrogen content and Septoria tritici blotch. Phytopathology, 94, 712–721.PubMedCrossRefGoogle Scholar
  111. Roberts, A. G., Santa Cruz, S., Roberts, I. M., Prior, D. A. M., Turgeon, R., & Oparka, K. J. (1997). Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. The Plant Cell, 9, 1381–1396.PubMedGoogle Scholar
  112. Roda, A., Nyrop, J., & English-Loeb, G. (2003). Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Experimental and Applied Acarology, 29, 193–211.CrossRefGoogle Scholar
  113. Sabatier, S., & Barthélémy, D. (1999). Growth dynamics and morphology of annual shoots, according to their architectural position, in young Cedrus atlantica (Endl.) Manetti,ex Carrière, (Pinaceae). Annals of Botany, 84, 387–392.CrossRefGoogle Scholar
  114. Sachs, T. (1999). ‘Node counting’: an internal control of balanced vegetative and reproductive development. Plant, Cell & Environment, 22, 757–766.CrossRefGoogle Scholar
  115. Saha, P. K., Nath, P., & Chatterjee, M. L. (2001). Effect of intercropping and spacing of lentil and tomato on the incidence of insect-pest infestation. Annals of Plant Protection Sciences, 9, 311–313.Google Scholar
  116. Sapoukhina, N., Durel, C. E., & Le Cam, B. (2009). Spatial deployment of gene-for-gene resistance governs evolution and spread of pathogen populations. Theoretical Ecology, 2, 229–238.CrossRefGoogle Scholar
  117. Segura, V., Cilas, C., & Costes, E. (2008). Dissecting apple tree architecture into genetic, ontogenetic and environmental effects. New Phytologist, 178, 302–314.PubMedCrossRefGoogle Scholar
  118. Selas, V. (1997). Cyclic population fluctuations of herbivores as an effect of cyclic seed cropping of plants: the mast depression hypothesis. Oikos, 80, 257–268.CrossRefGoogle Scholar
  119. Seleznyova, A., Thorp, G., White, M., Tustin, S., & Costes, E. (2003). Structural development of branches of ‘Royal Gala’ apple grafted on different rootstock/interstock combinations. Annals of Botany, 91, 1–8.CrossRefGoogle Scholar
  120. Simon, S., Lauri, P. É., Brun, L., Defrance, H., & Sauphanor, B. (2006). Does manipulation of fruit-tree architecture affect the development of pests and pathogens? A case study in an organic apple orchard. The Journal of Horticultural Science and Biotechnology, 81, 765–773.Google Scholar
  121. Simon, S., Sauphanor, B., & Lauri, P. É. (2007). Control of fruit tree pests through manipulation of tree architecture. Pest Technology, 1, 33–37.Google Scholar
  122. Simon, S., Morel, K., Durand, E., Brevalle, G., Girard, T., & Lauri, P. É. (2012). Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees—Structure and Functions, 26, 273–282.CrossRefGoogle Scholar
  123. Sinoquet, H., Moulia, B., & Bonhomme, R. (1991). Estimating the three-dimensional geometry of a maize crop as an input of radiation models: comparison between three-dimensional digitising and plant profiles. Agricultural and Forest Meteorology, 55, 233–249.CrossRefGoogle Scholar
  124. Skirvin, D. (2004). Virtual plant models of predatory mite movement in complex plant canopies. Ecological Modelling, 171, 301–313.CrossRefGoogle Scholar
  125. Skirvin, D., & Fenlon, J. (2003). Of mites and movement: the effects of plant connectedness and temperature on movement of Phytoseiulus persimilis. Biological Control, 27, 242–250.CrossRefGoogle Scholar
  126. Slafer, G. A., & Rawson, H. M. (1995). Photoperiod x temperature interactions in contrasting wheat genotypes: time to heading and final leaf number. Field Crops Research, 44, 73–83.CrossRefGoogle Scholar
  127. Smit, A. L., George, E., & Groenwold, J. (2000). Root observations and measurements at (transparent) interface with soil. In A. L. Smit et al. (Eds.), Root methods, a handbook (pp. 113–146). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  128. Stecconi, M., Puntieri, J. G., & Barthélémy, D. (2010). An architectural approach to the growth forms of Nothofagus pumilio (Nothofagaceae) along an altitudinal gradient. Botany-Botanique, 88, 699–709.CrossRefGoogle Scholar
  129. Sultan, S. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537–542.PubMedCrossRefGoogle Scholar
  130. Suzuki, A. (2002). Influence of shoot architectural position on shoot growth and branching patterns in Cleyera japonica. Tree Physiology, 22, 885–890.PubMedCrossRefGoogle Scholar
  131. Sylvester, A. W., Parker-Clark, V., & Murray, G. A. (2001). Leaf shape and anatomy as indicators of phase change in the grasses: comparison of maize, rice, and bluegrass. American Journal of Botany, 88, 2157–2167.PubMedCrossRefGoogle Scholar
  132. Tan, F. C., & Swain, S. M. (2006). Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum, 128, 8–17.CrossRefGoogle Scholar
  133. Tisne, S., Reymond, M., Vile, D., Fabre, J., Dauzat, M., Koornneef, M., & Granier, C. (2008). Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiology, 148, 1117–1127.PubMedCrossRefGoogle Scholar
  134. Vallavieille-Pope, C. (2004). Management of disease resistance diversity of cultivars of a species in single fields: controlling epidemics. Compte Rendus Biologies, 327, 611–620.CrossRefGoogle Scholar
  135. van Dam, N. M., & Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. Journal of Ecology, 99, 77–88.CrossRefGoogle Scholar
  136. van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.PubMedCrossRefGoogle Scholar
  137. Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., & de Visser, P. H. B. (2009). Functional-structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 61, 2101–2115.PubMedCrossRefGoogle Scholar
  138. Watson, M. A., Geber, M. A., & Jones, C. S. (1995). Ontogenetic contingency and the expression of plant plasticity. Trends in Ecology & Evolution, 10, 474–475.CrossRefGoogle Scholar
  139. White, J. (1979). The plant as a metapopulation. Annual Review of Ecological Systems, 10, 109–145.CrossRefGoogle Scholar
  140. Willaume, M., Lauri, P. É., & Sinoquet, H. (2004). Light interception in apple trees influenced by canopy architecture manipulation. Trees—Structure and Function, 18, 705–713.CrossRefGoogle Scholar
  141. Zotz, G., Wilhelm, K., & Becker, A. (2011). Heteroblasty—a review. The Botanical Review, 77, 109–151.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • E. Costes
    • 1
  • P. E. Lauri
    • 1
  • S. Simon
    • 2
  • B. Andrieu
    • 3
    • 4
  1. 1.INRA, UMR1334 AGAP, Architecture and Functioning of Fruit Species team, TA A-96/03Montpellier Cedex 5France
  2. 2.INRA, UE695 Recherche Intégrée, Domaine de GotheronSaint-Marcel-lès-ValenceFrance
  3. 3.INRA, UMR1091 EGCThiverval-GrignonFrance
  4. 4.AgroParisTech, UMR1091 EGCThiverval-GrignonFrance

Personalised recommendations